A survey of single machine scheduling to minimize weighted number of tardy jobs

This paper presents a review of single machine scheduling to minimize the weighted number of tardy jobs. The problem involves processing n jobs on a single machine, each having processing time $p_j$ and due date $d_j$. The aim is to schedule the jobs to meet their due date. A job is tardy if the completion time of job $j$ is $C_j>d_j$ and on-time otherwise. This paper assesses works done to minimize the weighted number of tardy jobs by providing an extensive review of authors, methods and techniques used. Finally, the possible direction for future research is presented.

[1]  Stéphane Dauzère-Pérès,et al.  Genetic algorithms to minimize the weighted number of late jobs on a single machine , 2003, Eur. J. Oper. Res..

[2]  Robert L. Bulfin,et al.  Scheduling a Single Machine to Minimize the Weighted Number of Tardy Jobs , 1983 .

[3]  Philippe Baptiste,et al.  An O(n4) algorithm for preemptive scheduling of a single machine to minimize the number of late jobs , 1999, Oper. Res. Lett..

[4]  John L. Bruno,et al.  Complexity of Task Sequencing with Deadlines, Set-Up Times and Changeover Costs , 1978, SIAM J. Comput..

[5]  A. Nagar,et al.  Multiple and bicriteria scheduling : A literature survey , 1995 .

[6]  Benjamin P.-C. Yen,et al.  Single machine scheduling to minimize total weighted earliness subject to minimal number of tardy jobs , 2009, Eur. J. Oper. Res..

[7]  Dvir Shabtay,et al.  A bicriteria approach to minimize the total weighted number of tardy jobs with convex controllable processing times and assignable due dates , 2011, J. Sched..

[8]  Abdul Raouf,et al.  Minimizing mean tardiness subject to unspecified minimum number tardy for a single machine , 1996 .

[9]  Fariborz Jolai,et al.  Minimizing number of tardy jobs on a batch processing machine with incompatible job families , 2005, Eur. J. Oper. Res..

[10]  E. L. Lawler,et al.  A dynamic programming algorithm for preemptive scheduling of a single machine to minimize the number of late jobs , 1991 .

[11]  Michael Pinedo,et al.  Stochastic Scheduling with Release Dates and Due Dates , 1983, Oper. Res..

[12]  Peter Brucker,et al.  Single machine batch scheduling to minimize the weighted number of late jobs , 1996, Math. Methods Oper. Res..

[13]  Pei-Chann Chang,et al.  Scheduling n jobs on one machine to minimize the maximum lateness with a minimum number of tardy jobs , 2001 .

[14]  Philippe Baptiste,et al.  A branch and bound to minimize the number of late jobs on a single machine with release time constraints , 2003, Eur. J. Oper. Res..

[15]  Wen-Hwa Yang,et al.  Survey of scheduling research involving setup times , 1999, Int. J. Syst. Sci..

[16]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[17]  Eugene L. Lawler,et al.  Scheduling a Single Machine to Minimize the Number of Late Jobs , 1983 .

[18]  R. Bulfin,et al.  Complexity of single machine, multi-criteria scheduling problems , 1993 .

[19]  Cerry M. Klein,et al.  Minimizing the expected number of tardy jobs when processing times are normally distributed , 2002, Oper. Res. Lett..

[20]  Frank Werner,et al.  Parallel machine problems with equal processing times: a survey , 2011, J. Sched..

[21]  Rui Zhang,et al.  Minimizing the Weighted Number of Late Jobs with Batch Setup Times and Delivery Costs on a Single Machine , 2007 .

[22]  Suna Kondakci,et al.  Scheduling with bicriteria: total flowtime and number of tardy jobs , 1997 .

[23]  Jan Karel Lenstra,et al.  Complexity results for scheduling chains on a single machine : (preprint) , 1980 .

[24]  Jatinder N. D. Gupta,et al.  A REVIEW OF FLOWSHOP SCHEDULING RESEARCH WITH SETUP TIMES , 2000 .

[25]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[26]  Milan Vlach,et al.  Scheduling with earliness and tardiness penalties , 1992 .

[27]  Jay B. Ghosh,et al.  Batch scheduling to minimize the weighted number of tardy jobs , 2007, Comput. Ind. Eng..

[28]  George L. Vairaktarakis,et al.  The single-machine scheduling problem to minimize total tardiness subject to minimum number of tardy jobs , 1995 .

[29]  Chris N. Potts,et al.  Integrating Scheduling with Batching and Lot-Sizing: A Review of Algorithms and Complexity , 1992 .

[30]  Hiroyuki Nagasawa,et al.  Extension of Deterministic Scheduling to Stochastic Scheduling , 1992 .

[31]  V. Reddy Dondeti,et al.  Impact of learning and fatigue factors on single machine scheduling with penalties for tardy jobs , 1998, Eur. J. Oper. Res..

[32]  N. S. Barnett,et al.  Private communication , 1969 .

[33]  M.B. Aryanezhad,et al.  Combination of Genetic Algorithm and LP-metric to solve single machine bi-criteria scheduling problem , 2009, 2009 IEEE International Conference on Industrial Engineering and Engineering Management.

[34]  L. B. J. M. Sturm A Simple Optimality Proof of Moore's Sequencing Algorithm , 1970 .

[35]  Nejib Zaguia,et al.  Minimizing the number of tardy jobs in single machine sequencing , 1993, Discret. Math..

[36]  George Steiner Minimizing the Number of Tardy Jobs with Precedence Constraints and Agreeable Due Dates , 1997, Discret. Appl. Math..

[37]  Cyril Briand,et al.  A MIP approach for the minimization of the number of late jobs in single machine scheduling , 2009 .

[38]  J. M. Moore,et al.  A Functional Equation and its Application to Resource Allocation and Sequencing Problems , 1969 .

[39]  Ahmet B. Keha,et al.  Using genetic algorithms for single-machine bicriteria scheduling problems , 2003, Eur. J. Oper. Res..

[40]  Cerry M. Klein,et al.  Single machine stochastic scheduling to minimize the expected number of tardy jobs using mathematical programming models , 2005, Comput. Ind. Eng..

[41]  Laurent Péridy,et al.  Using short-term memory to minimize the weighted number of late jobs on a single machine , 2003, Eur. J. Oper. Res..

[42]  Stéphane Dauzère-Pérès,et al.  Using Lagrangean relaxation to minimize the weighted number of late jobs on a single machine , 2003 .

[43]  Chung-Lun Li,et al.  Single-machine scheduling to minimize the weighted number of early and tardy agreeable jobs , 1995, Comput. Oper. Res..

[44]  Peter Brucker,et al.  Scheduling Equal Processing Time Jobs to Minimize the Weighted Number of Late Jobs , 2006, J. Math. Model. Algorithms.

[45]  Bertrand M. T. Lin,et al.  A concise survey of scheduling with time-dependent processing times , 2004, Eur. J. Oper. Res..

[46]  Zhi-Long Chen,et al.  Optimality proof of the Kise–Ibaraki–Mine algorithm , 2010, Journal of Scheduling.

[47]  David S. Johnson,et al.  Scheduling Tasks with Nonuniform Deadlines on Two Processors , 1976, J. ACM.

[48]  Jeffrey B. Sidney,et al.  Optimal Single-Machine Scheduling with Earliness and Tardiness Penalties , 1977, Oper. Res..

[49]  Yuzhong Zhang,et al.  Approximation Algorithm for Minimizing the Weighted Number of Tardy Jobs on a Batch Machine , 2009, COCOA.

[50]  Chengbin Chu,et al.  A survey of scheduling with deterministic machine availability constraints , 2010, Comput. Ind. Eng..

[51]  A. Kan Machine Scheduling Problems: Classification, Complexity and Computations , 1976 .

[52]  Gerhard J. Woeginger,et al.  Minimizing the Number of Tardy Jobs on a Single Machine with Batch Setup Times , 1998, Acta Cybern..

[53]  G. Rand Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop , 1982 .

[54]  J. A. Hoogeveen,et al.  Scheduling a batching machine , 1998 .

[55]  W. Maxwell On Sequencing n Jobs on One Machine to Minimize the Number of Late Jobs , 1970 .

[56]  Sheik Meeran,et al.  Deterministic job-shop scheduling: Past, present and future , 1999, Eur. J. Oper. Res..

[57]  Clyde L. Monma,et al.  On the Complexity of Scheduling with Batch Setup Times , 1989, Oper. Res..

[58]  J. M. Moore An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs , 1968 .

[59]  Suresh Chand,et al.  Single machine scheduling to minimize weighted earliness subject to no tardy jobs , 1988 .

[60]  William L. Maxwell,et al.  Theory of scheduling , 1967 .

[61]  Deming Lei,et al.  Multi-objective production scheduling: a survey , 2009 .

[63]  Pius J. Egbelu,et al.  Algorithm for minimizing weighted earliness penalty in single-machine problem , 2005, Eur. J. Oper. Res..

[64]  Joseph Y.-T. Leung,et al.  Complexity of two dual criteria scheduling problems , 2007, Oper. Res. Lett..

[65]  Ghasem Moslehi,et al.  Minimizing maximum earliness and number of tardy jobs in the single machine scheduling problem , 2010, Comput. Math. Appl..

[66]  Dvir Shabtay,et al.  Optimal Due Date Assignment and Resource Allocation to Minimize the Weighted Number of Tardy Jobs on a Single Machine , 2007, Manuf. Serv. Oper. Manag..

[67]  Dvir Shabtay,et al.  A survey of scheduling with controllable processing times , 2007, Discret. Appl. Math..

[68]  Philippe Baptiste,et al.  Ten notes on equal-processing-time scheduling , 2004, 4OR.

[69]  Kenneth R. Baker,et al.  Scheduling Groups of Jobs on a Single Machine , 1995, Oper. Res..

[70]  Joseph Y.-T. Leung,et al.  Bi-criteria scheduling problems: Number of tardy jobs and maximum weighted tardiness , 2007, Eur. J. Oper. Res..

[71]  T. C. Edwin Cheng,et al.  Minimizing Weighted Number of Early and Tardy Jobs with a Common Due Window Involving Location Penalty , 2001, Ann. Oper. Res..

[72]  Nodari Vakhania,et al.  Preemptive scheduling of equal-length jobs to maximize weighted throughput , 2002, Oper. Res. Lett..

[73]  Chris N. Potts,et al.  The Coordination of Scheduling and Batch Deliveries , 2005, Ann. Oper. Res..

[74]  Chung-Lun Li,et al.  Single-machine scheduling with trade-off between number of tardy jobs and resource allocation , 1996, Oper. Res. Lett..

[75]  Philippe Baptiste,et al.  Polynomial time algorithms for minimizing the weighted number of late jobs on a single machine with equal processing times , 1999 .

[76]  Susanne Albers,et al.  The Complexity of One-Machine Batching Problems , 1993, Discret. Appl. Math..

[77]  Eugene L. Lawler,et al.  Chapter 9 Sequencing and scheduling: Algorithms and complexity , 1993, Logistics of Production and Inventory.

[78]  Han Hoogeveen,et al.  Minimizing total weighted tardiness on a single machine with release dates and equal-length jobs , 2010, J. Sched..

[79]  E. L. Lawler,et al.  Knapsack-like scheduling problems, the Moore-Hodgson algorithm and the 'tower of sets' property , 1994 .

[80]  L. V. Wassenhove,et al.  Algorithms for scheduling a single machine to minimize the weighted number of late jobs , 1988 .

[81]  Bertrand M. T. Lin,et al.  Minimizing the weighted number of tardy jobs and maximum tardiness in relocation problem with due date constraints , 1999, Eur. J. Oper. Res..

[82]  John R. King,et al.  Production Scheduling , 1988, Computer-Aided Production Management.

[83]  Fariborz Jolai,et al.  Genetic algorithm for bi-criteria single machine scheduling problem of minimizing maximum earliness and number of tardy jobs , 2007, Appl. Math. Comput..

[84]  Jan Karel Lenstra,et al.  Perspectives on parallel computing , 1989 .

[85]  Hiroshi Kise,et al.  Note-On Baluts Algorithm and NP-Completeness for a Chance-Constrained Scheduling Problem , 1983 .

[86]  Jatinder N. D. Gupta,et al.  Scheduling with two job classes and setup times to minimize the number of tardy jobs , 1996 .

[87]  T.C.E. Cheng,et al.  Survey of scheduling research involving due date determination decisions , 1989 .

[88]  Gary D. Scudder,et al.  Sequencing with Earliness and Tardiness Penalties: A Review , 1990, Oper. Res..

[89]  Han Hoogeveen,et al.  Minimizing the Number of Tardy Jobs , 2004, Handbook of Scheduling.

[90]  O. J. Boxma,et al.  Minimizing the expected weighted number of tardy jobs in stochastic flow shops , 1986 .

[91]  Gwo-Ji Sheen,et al.  Single-machine scheduling with multiple performance measures: Minimizing job-dependent earliness and tardiness subject to the number of tardy jobs , 2007 .

[92]  Chris N. Potts,et al.  Supply chain scheduling: Batching and delivery , 2003, Oper. Res..

[93]  R. L. Bulfin,et al.  Minimizing the weighted number of tardy jobs on a single machine with release dates , 2007, Eur. J. Oper. Res..

[94]  Ruslan Sadykov,et al.  A branch-and-check algorithm for minimizing the weighted number of late jobs on a single machine with release dates , 2008, Eur. J. Oper. Res..

[95]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[96]  Panneerselvam Senthilkumar,et al.  Literature Review of Single Machine Scheduling Problem with Uniform Parallel Machines , 2010, Intell. Inf. Manag..

[97]  Chris N. Potts,et al.  Branch and Bound Algorithms for Single Machine Scheduling with Batching to Minimize the Number of Late Jobs , 2005, J. Sched..

[98]  Han Hoogeveen,et al.  On-line scheduling on a single machine: maximizing the number of early jobs , 2000, Oper. Res. Lett..

[99]  Murat Köksalan,et al.  Scheduling to minimize maximum earliness and number of tardy jobs where machine idle time is allowed , 2003, J. Oper. Res. Soc..

[100]  Murat Köksalan,et al.  A Simulated Annealing Approach to Bicriteria Scheduling Problems on a Single Machine , 2000, J. Heuristics.

[101]  Marek Chrobak,et al.  A Note on Scheduling Equal-Length Jobs to Maximize Throughput , 2006, J. Sched..

[102]  Philippe Baptiste,et al.  Batching identical jobs , 2000, Math. Methods Oper. Res..

[103]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[104]  R. L. Bulfin,et al.  Minimizing the weighted number of tardy jobs on a single machine , 2003, Eur. J. Oper. Res..

[105]  Stephen J. Balut,et al.  Scheduling to Minimize the Number of Late Jobs When Set-Up and Processing Times are Uncertain , 1973 .

[106]  Dorit S. Hochbaum,et al.  Scheduling with batching: minimizing the weighted number of tardy jobs , 1994, Oper. Res. Lett..

[107]  Alessandro Agnetis,et al.  Multi-agent single machine scheduling , 2007, Ann. Oper. Res..

[108]  M. Mazdeha,et al.  A mathematical model for weighted tardy jobs scheduling problem with a batched delivery system , 2011 .

[109]  Rui Zhang,et al.  Approximation algorithms for minimizing the total weighted number of late jobs with late deliveries in two-level supply chains , 2009, J. Sched..

[110]  Stéphane Dauzère-Pérès,et al.  Minimizing late jobs in the general one machine scheduling problem , 1995 .

[111]  Rakesh K. Sarin,et al.  Scheduling with multiple performance measures: the one-machine case , 1986 .

[112]  H. M. Soroush,et al.  Minimizing the weighted number of early and tardy jobs in a stochastic single machine scheduling problem , 2007, Eur. J. Oper. Res..

[113]  C. T. Ng,et al.  Scheduling deteriorating jobs with CON/SLK due date assignment on a single machine , 2011 .

[114]  A. M. A. Hariri,et al.  Single machine scheduling with deadlines to minimize the weighted number of tardy jobs , 1994 .

[115]  George L. Vairaktarakis,et al.  Complexity of Single Machine Hierarchical Scheduling: A Survey , 1993 .

[116]  Prabuddha De,et al.  On the minimization of the weighted number of tardy jobs with random processing times and deadline , 1991, Comput. Oper. Res..

[117]  Rakesh K. Sarin,et al.  Technical Note - Single Machine Scheduling with Controllable Processing Times and Number of Jobs Tardy , 1989, Oper. Res..

[118]  Toshihide Ibaraki,et al.  A Solvable Case of the One-Machine Scheduling Problem with Ready and Due Times , 1978, Oper. Res..

[119]  Ron Shamir,et al.  Minimizing the number of tardy job units under release time constraints , 1990, Discret. Appl. Math..

[120]  Abdul Raouf,et al.  One-machine scheduling to minimize mean tardiness with minimum number tardy , 1997 .

[121]  Gur Mosheiov,et al.  Single machine scheduling to minimize the number of early and tardy jobs , 1996, Comput. Oper. Res..

[122]  Han Hoogeveen,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[123]  Guochun Tang A new branch and bound algorithm for minimizing the weighted number of tardy jobs , 1990 .

[124]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[126]  Jacques Carlier Problemes d'ordonnancement à durées égales , 1981 .

[127]  Chris N. Potts,et al.  Scheduling with batching: A review , 2000, Eur. J. Oper. Res..

[128]  M. Mathirajan,et al.  A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor , 2006 .

[129]  Jatinder N. D. Gupta,et al.  A review of scheduling research involving setup considerations , 1999 .

[130]  T. C. Edwin Cheng,et al.  Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs , 2006, Theor. Comput. Sci..

[131]  Wooseung Jang,et al.  Dynamic scheduling of stochastic jobs on a single machine , 2002, Eur. J. Oper. Res..

[132]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[133]  O Abass,et al.  Scheduling Agreeable Jobs On A Single Machine To Minimize Weighted Number Of Early And Tardy Jobs , 2008 .

[134]  Vincent T'Kindt,et al.  Sequencing a single machine with due dates and deadlines: an ILP-based approach to solve very large instances , 2010, J. Sched..

[135]  Ruslan Sadykov A Hybrid Branch-And-Cut Algorithm for the One-Machine Scheduling Problem , 2004, CPAIOR.

[136]  Guohua Wan,et al.  Single machine bicriteria scheduling: A survey , 2003 .