A New Mean-Field Method Suitable for Strongly Correlated Electrons: Computationally Facile Antisymmetric Products of Nonorthogonal Geminals.

We propose an approach to the electronic structure problem based on noninteracting electron pairs that has similar computational cost to conventional methods based on noninteracting electrons. In stark contrast to other approaches, the wave function is an antisymmetric product of nonorthogonal geminals, but the geminals are structured so the projected Schrödinger equation can be solved very efficiently. We focus on an approach where, in each geminal, only one of the orbitals in a reference Slater determinant is occupied. The resulting method gives good results for atoms and small molecules. It also performs well for a prototypical example of strongly correlated electronic systems, the hydrogen atom chain.

[1]  Gustavo E Scuseria,et al.  Exploring Copper Oxide Cores Using the Projected Hartree-Fock Method. , 2012, Journal of chemical theory and computation.

[2]  W. Kutzelnigg Separation of strong (bond-breaking) from weak (dynamical) correlation , 2012 .

[3]  G. Scuseria,et al.  Symmetry-projected variational approach for ground and excited states of the two-dimensional Hubbard model , 2012, 1204.2006.

[4]  P. Surján,et al.  Strongly orthogonal geminals: size-extensive and variational reference states , 2012, Journal of Mathematical Chemistry.

[5]  Takashi Tsuchimochi,et al.  Projected Hartree-Fock theory. , 2012, The Journal of chemical physics.

[6]  Stefano Evangelisti,et al.  Full‐configuration‐interaction study of the metal‐insulator transition in a model system: Hn linear chains n=4, 6,…, 16 , 2011 .

[7]  David W. Small,et al.  Post-modern valence bond theory for strongly correlated electron spins. , 2011, Physical chemistry chemical physics : PCCP.

[8]  Garnet Kin-Lic Chan,et al.  Optimizing large parameter sets in variational quantum Monte Carlo , 2011, 1108.0900.

[9]  Thomas M Henderson,et al.  Projected quasiparticle theory for molecular electronic structure. , 2011, The Journal of chemical physics.

[10]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[11]  John A. Parkhill,et al.  A truncation hierarchy of coupled cluster models of strongly correlated systems based on perfect-pairing references: the singles+doubles models. , 2010, The Journal of chemical physics.

[12]  P. Surján,et al.  Generalized Møller-Plesset Partitioning in Multiconfiguration Perturbation Theory. , 2010, Journal of chemical theory and computation.

[13]  G. Sierra,et al.  Exact solution of the p + ip pairing Hamiltonian and a hierarchy of integrable models , 2010, 1001.1591.

[14]  V. Rassolov,et al.  Geminal model chemistry III: Partial spin restriction. , 2007, The Journal of chemical physics.

[15]  K. Schmidt,et al.  Pfaffian pairing and backflow wavefunctions for electronic structure quantum Monte Carlo methods , 2006, cond-mat/0610850.

[16]  P. Cassam-Chenaï The electronic mean-field configuration interaction method. I. Theory and integral formulas. , 2006, The Journal of chemical physics.

[17]  K. Schmidt,et al.  Pfaffian pairing wave functions in electronic-structure quantum Monte Carlo simulations. , 2005, Physical review letters.

[18]  C. Kollmar The "JK-only" approximation in density matrix functional and wave function theory. , 2004, The Journal of chemical physics.

[19]  S. Pittel,et al.  Colloquium: Exactly solvable Richardson-Gaudin models for many-body quantum systems , 2004, nucl-th/0405011.

[20]  Christian Kollmar,et al.  A new approach to density matrix functional theory , 2003 .

[21]  Vitaly A. Rassolov,et al.  A geminal model chemistry , 2002 .

[22]  Edina Rosta,et al.  Two-body zeroth order hamiltonians in multireference perturbation theory: The APSG reference state , 2002 .

[23]  Martin Head-Gordon,et al.  The imperfect pairing approximation , 2000 .

[24]  J. Draayer,et al.  A particle-number-conserving solution to the generalized pairing problem , 1997, nucl-th/9709036.

[25]  M. Hall,et al.  GENERALIZED MOLECULAR ORBITAL THEORY II , 1997 .

[26]  Krishnan Raghavachari,et al.  Electron Correlation Effects in Molecules , 1996 .

[27]  Martin Head-Gordon,et al.  Quantum chemistry and molecular processes , 1996 .

[28]  J. Cullen,et al.  Generalized valence bond solutions from a constrained coupled cluster method , 1996 .

[29]  L. Kier,et al.  A molecular orbital valence bond study of 3-methyl sydnone and 3-methyl pseudosydnone , 1990 .

[30]  Ramon Carbo,et al.  A general multiconfiguration paired excitation self-consistent field theory (MC PE SCF) , 1977 .

[31]  M. Gaudin Diagonalisation d'une classe d'hamiltoniens de spin , 1976 .

[32]  D. B. Cook,et al.  Doubly-occupied orbital MCSCF methods , 1975 .

[33]  W. Goddard,et al.  Generalized valence bond description of bonding in low-lying states of molecules , 1973 .

[34]  William A. Goddard,et al.  Self‐Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2 , 1972 .

[35]  W. Goddard,et al.  Generalized valence bond wavefunctions for the low lying states of methylene , 1972 .

[36]  T. Seligman,et al.  Group theory and second quantization for nonorthogonal orbitals , 1971 .

[37]  J. F. Harrison,et al.  Geminal Product Wavefunctions: A General Formalism , 1971 .

[38]  David M. Silver,et al.  Electron Correlation and Separated Pair Approximation in Diatomic Molecules. I. Theory , 1970 .

[39]  Enrico Clementi,et al.  Complete multi-configuration self-consistent field theory , 1967 .

[40]  Frank Weinhold,et al.  Reduced Density Matrices of Atoms and Molecules. I. The 2 Matrix of Double‐Occupancy, Configuration‐Interaction Wavefunctions for Singlet States , 1967 .

[41]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[42]  Darwin W. Smith,et al.  Natural Orbitals and Geminals of the Beryllium Atom , 1965 .

[43]  P. Durand,et al.  Transposition of the Theories Describing Superconducting Systems to Molecular Systems. Method of Biorbitals , 1965 .

[44]  A. J. Coleman Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers , 1965 .

[45]  N. Sherman,et al.  Exact eigenstates of the pairing-force Hamiltonian , 1964 .

[46]  R. Mcweeny,et al.  The density matrix in may-electron quantum mechanics III. Generalized product functions for beryllium and four-electron ions , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[47]  R. Richardson A restricted class of exact eigenstates of the pairing-force Hamiltonian , 1963 .

[48]  H. Shull,et al.  ELECTRON PAIRS IN THE BERYLLIUM ATOM1 , 1962 .

[49]  Per-Olov Löwdin,et al.  Note on the Separability Theorem for Electron Pairs , 1961 .

[50]  Tadashi Arai,et al.  Theorem on Separability of Electron Pairs , 1960 .

[51]  Jack Levine,et al.  An Identity of Cayley , 1960 .

[52]  J. Blatt Electron Pairs in the Theory of Superconductivity , 1960 .

[53]  R. Mcweeny,et al.  The density matrix in many-electron quantum mechanics I. Generalized product functions. Factorization and physical interpretation of the density matrices , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  Robert G. Parr,et al.  Theory of Separated Electron Pairs , 1958 .

[55]  R. Parr,et al.  Generalized Antisymmetrized Product Wave Functions for Atoms and Molecules , 1956 .

[56]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[57]  John Edward Lennard-Jones,et al.  The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[58]  J. C. Slater A Generalized Self-Consistent Field Method , 1953 .

[59]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[60]  John C. Slater,et al.  The Theory of Complex Spectra , 1929 .

[61]  J. C. Slater The Self Consistent Field and the Structure of Atoms , 1928 .

[62]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[63]  Gilbert N. Lewis,et al.  The Atom and the Molecule , 1916, Resonance.

[64]  Paul W. Ayers,et al.  A size-consistent approach to strongly correlated systems using a generalized antisymmetrized product of nonorthogonal geminals , 2013 .

[65]  Péter R. Surján,et al.  AN INTRODUCTION TO THE THEORY OF GEMINALS , 1999 .

[66]  Mihály Kállay,et al.  Nonconventional partitioning of the many-body Hamiltonian for studying correlation effects , 1998 .

[67]  A. J. Coleman THE AGP MODEL FOR FERMION SYSTEMS , 1997 .

[68]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[69]  D. Silver Bilinear Orbital Expansion of Geminal‐Product Correlated Wavefunctions , 1970 .

[70]  D. Silver Natural Orbital Expansion of Interacting Geminals , 1969 .

[71]  W. Kutzelnigg On the validity of the electron pair approximation for the Beryllium ground state , 1965 .

[72]  Werner Kutzelnigg,et al.  Direct Determination of Natural Orbitals and Natural Expansion Coefficients of Many‐Electron Wavefunctions. I. Natural Orbitals in the Geminal Product Approximation , 1964 .