Super-regenerative receiver at 433 MHz

This paper presents a receiver for operation in the 433MHz ISM band. The selected architecture explores the super-regeneration phenomena to achieve a high sensitivity for applying in wireless implantable microsystems. This radio-frequency (RF) chip can be supplied with a voltage of only 3V for demodulating signals with powers in the range (-100, -40)dB. The codulation (modulation and coding) scheme of the binary data is a variation of the Manchester code combined with on/off keying (OOK) modulation. The AMIS 0.7@mm CMOS process was selected for targeting the requirement to fabricate a low-cost receiver, whose prototype was integrated in a die with an area of 5x5mm^2. Also, this receiver is fully compatible with commercial transmitters for the same frequency.

[1]  D. Leenaerts Chaotic behavior in super regenerative detectors , 1996 .

[2]  Bruno Pattan Robust Modulation Methods and Smart Antennas in Wireless Communications , 1999 .

[3]  Catherine Dehollain,et al.  A 2-V 600-/spl mu/A 1-GHz BiCMOS super-regenerative receiver for ISM applications , 1998 .

[4]  José Higino Correia,et al.  Integrated chip-size antennas for wireless microsystems: Fabrication and design considerations , 2006 .

[5]  Carlos Couto,et al.  5.7 GHz on-chip antenna/RF CMOS transceiver for wireless sensor networkS , 2006 .

[6]  E. Topsakal,et al.  Design of a Dual-Band Implantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring , 2008, IEEE Transactions on Microwave Theory and Techniques.

[7]  M. Declercq,et al.  An 11-Mb/s 2.1-mW Synchronous Superregenerative Receiver at 2.4 GHz , 2007, IEEE Transactions on Microwave Theory and Techniques.

[8]  C.M. Furse,et al.  Design of implantable microstrip antenna for communication with medical implants , 2004, IEEE Transactions on Microwave Theory and Techniques.

[9]  F. Xavier Moncunill-Geniz,et al.  New superregenerative architectures for direct-sequence spread-spectrum communications , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  T. Zwick,et al.  Determination of the complex permittivity of packaging materials at millimeter-wave frequencies , 2006, IEEE Transactions on Microwave Theory and Techniques.

[12]  W.J. Chappell,et al.  Evaluation of Cardiovascular Stents as Antennas for Implantable Wireless Applications , 2009, IEEE Transactions on Microwave Theory and Techniques.

[13]  Kazimierz Siwiak,et al.  Radiowave Propagation and Antennas for Personal Communications , 1995 .

[14]  M.P. Flynn,et al.  A Fully Integrated Auto-Calibrated Super-Regenerative Receiver in 0.13-$\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[15]  R. Pethig,et al.  Dielectric properties of body tissues. , 1987, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[16]  M. Bartek,et al.  Analysis of chip-size antennas on lossy substrates for short-range wireless micro systems , 2002 .

[17]  M. Declercq,et al.  A low-power CMOS super-regenerative receiver at 1 GHz , 2001, IEEE J. Solid State Circuits.

[18]  José Higino Correia,et al.  High-resistivity polycrystalline silicon as RF substrate in wafer-level packaging , 2005 .

[19]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[20]  Francesco Merli,et al.  On the efficient design, analysis and measurement of bio-implantable electrically small antennas , 2010, 2010 URSI International Symposium on Electromagnetic Theory.

[21]  Douglas A. Christensen,et al.  Basic Introduction to Bioelectromagnetics , 1999 .

[22]  F. Touati,et al.  On-chip integration of dipole antenna and VCO using standard BiCMOS technology for 10 GHz applications , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[23]  Carlos Couto,et al.  A wireless RF CMOS mixed-signal interface for soil moisture measurements , 2004 .

[24]  J.L. Smith,et al.  RF Coupling in a 433-MHz Biotelemetry System for an Artificial Hip , 2009, IEEE Antennas and Wireless Propagation Letters.

[25]  William G. Scanlon,et al.  Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz , 2000, IEEE Transactions on Biomedical Engineering.

[26]  N.S. Dias,et al.  A 2.4-GHz Low-Power/Low-Voltage Wireless Plug-and-Play Module for EEG Applications , 2007, IEEE Sensors Journal.

[27]  C. Dehollain,et al.  A low-power 1GHz super-regenerative transceiver with time-shared PLL control , 2000, Proceedings of the 26th European Solid-State Circuits Conference.

[28]  Zhihua Wang,et al.  Low power high data rate wireless endoscopy transceiver , 2007, Microelectron. J..

[29]  John L. Volakis,et al.  Antenna Engineering Handbook , 2007 .

[30]  K. T Lau,et al.  A low-power synapse/neuron cell for artificial neural networks , 1999 .

[31]  Jordi Sacristán,et al.  Implantable stimulator and recording device for artificial prosthesis control , 2007, Microelectron. J..

[32]  M.P. Flynn,et al.  A Fully Integrated Auto-Calibrated SuperRegenerative Receiver , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[33]  Francisco Javier Moncunill Geniz New super-regenerative architectures for direct-sequence spread-spectrum communications , 2002 .

[34]  Darrell Ash A Low Cost Superregenerative Saw Stabilized Receiver , 1987, IEEE Transactions on Consumer Electronics.