A Theoretical Framework for Physically Based Rendering

In this paper we introduce the concept of the global reflection distribution function which allows concise formulation of the global illumination problem. Unlike previous formulations it is not geared towards any specific algorithm. As an example of its versatility we derive a Monte Carlo rendering algorithm that seamlessly integrates the ideas of shooting and gathering power to create photorealistic images.

[1]  Donald P. Greenberg,et al.  A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods , 1987, SIGGRAPH.

[2]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[3]  Sudhir P. Mudur,et al.  Computation of global illumination by Monte Carlo simulation of the particle model of light , 1992 .

[4]  P GreenbergDonald,et al.  A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods , 1987 .

[5]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[6]  Peter Shirley,et al.  Physically based lighting calculations for computer graphics , 1991 .

[7]  Holly E. Rushmeier,et al.  A progressive multi-pass method for global illumination , 1991, SIGGRAPH.

[8]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[9]  Sumanta N. Pattanaik,et al.  Computational Methods for Global Illumination and Visual-isation of Complex 3D Environments , 1993 .

[10]  David Salesin,et al.  An importance-driven radiosity algorithm , 1992, SIGGRAPH.

[11]  T. DeRose,et al.  A Continuous Adjoint Formulation for Radiance Transport , 1993 .

[12]  Pat Hanrahan,et al.  Importance and Discrete Three Point Transport , 1993 .

[13]  Samuel P. Uselton,et al.  Statistically optimized sampling for distributed ray tracing , 1985, SIGGRAPH.

[14]  Paul S. Wang,et al.  Distribution Ray Tracing: Theory and Practice , 1992 .

[15]  Sumanta N. Pattanaik The Mathematical Framework of Adjoint Equations for Illumination Computation , 1993, ICCG.

[16]  B. Lange The Simulation of Radiant Light Transfer with Stochastic Ray-Tracing , 1994 .

[17]  Claude Puech,et al.  A general two-pass method integrating specular and diffuse reflection , 1989, SIGGRAPH '89.

[18]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[19]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[20]  Sumanta N. Pattanaik,et al.  The Potential Equation and Importance in Illumination Computations , 1993, Comput. Graph. Forum.