Erosion and Exhumation in the Himalaya from cosmogenic isotope inventories of river sediments

[1]  Michel Klein,et al.  MASS ACCUMULATION RATES IN ASIA DURING THE CENOZOIC , 2002 .

[2]  J. Brasington,et al.  Small-catchment perspective on Himalayan weathering fluxes , 2002 .

[3]  M. Bickle,et al.  Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits , 2002 .

[4]  Lewis A. Owen,et al.  Natural and human-induced landsliding in the Garhwal Himalaya of northern India , 2001 .

[5]  B. N. Upreti,et al.  Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya , 2001 .

[6]  J. G. King,et al.  Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales , 2001 .

[7]  N. Hovius,et al.  Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments , 2001 .

[8]  C. Riebe,et al.  Minimal climatic control on erosion rates in the Sierra Nevada, California , 2001 .

[9]  Peizhen Zhang,et al.  Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates , 2001, Nature.

[10]  M. A. Moore,et al.  On the inference of denudation rates from cooling ages of minerals , 2001 .

[11]  J. Ganguly,et al.  Exhumation history of a section of the Sikkim Himalayas, India: records in the metamorphic mineral equilibria and compositional zoning of garnet , 2000 .

[12]  J. Stone Air pressure and cosmogenic isotope production , 2000 .

[13]  G. Foster,et al.  The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry , 2000 .

[14]  A. Jain,et al.  Timing, quantification and tectonic modelling of Pliocene–Quaternary movements in the NW Himalaya: evidence from fission track dating , 2000 .

[15]  Rodolphe Cattin,et al.  Modeling mountain building and the seismic cycle in the Himalaya of Nepal , 2000 .

[16]  T. Dunai Erratum to “Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation” [Earth Planet. Sci. Lett. 176 (2000) 157–169]1 , 2000 .

[17]  Jérôme Lavé,et al.  Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal , 2000 .

[18]  J. Bunbury,et al.  Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya , 2000 .

[19]  T. Dunai Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation , 2000 .

[20]  N. Harris,et al.  Timing of prograde metamorphism in the Zanskar Himalaya , 1999 .

[21]  S. Kelley,et al.  The thermal response of a metamorphic belt to extension: constraints from laser Ar data on metamorphic micas , 1998 .

[22]  P. Kubik,et al.  10BE AND 26AL PRODUCTION RATES DEDUCED FROM AN INSTANTANEOUS EVENT WITHIN THE DENDRO-CALIBRATION CURVE, THE LANDSLIDE OF KOFELS, OTZ VALLEY, AUSTRIA , 1998 .

[23]  D. Vance,et al.  Pressure-temperature paths from P-T pseudosections and zoned garnets: potential, limitations and examples from the Zanskar Himalaya, NW India , 1998 .

[24]  R. Stallard,et al.  Determination of predevelopment denudation rates of an agricultural watershed (Cayaguás River, Puerto Rico) using in-situ-produced 10Be in river-borne quartz , 1998 .

[25]  W. Ludwig,et al.  River sediment discharge to the oceans: present-day controls and global budgets , 1998 .

[26]  J. Avouac,et al.  Erosion as a driving mechanism of intracontinental mountain growth , 1996 .

[27]  A. Whittington EXHUMATION OVERRATED AT NANGA PARBAT, NORTHERN PAKISTAN , 1996 .

[28]  A. Jain,et al.  Fission-track and 40Ar39Ar evidence for episodic denudation of the Gangotri granites in the Garhwal Higher Himalaya, India , 1996 .

[29]  James W. Kirchner,et al.  Spatially Averaged Long-Term Erosion Rates Measured from in Situ-Produced Cosmogenic Nuclides in Alluvial Sediment , 1996, The Journal of Geology.

[30]  Nicholas Brozovic,et al.  Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas , 1996, Nature.

[31]  P. Bierman,et al.  ESTIMATING RATES OF DENUDATION USING COSMOGENIC ISOTOPE ABUNDANCES IN SEDIMENT , 1996 .

[32]  P. Bierman,et al.  Improving in Situ Cosmogenic Chronometers , 1995, Quaternary Research.

[33]  B. Dupré,et al.  A global geochemical mass budget applied to the Congo basin rivers: Erosion rates and continental crust composition , 1995 .

[34]  M. Summerfield,et al.  Natural controls of fluvial denudation rates in major world drainage basins , 1994 .

[35]  E. Fielding,et al.  Erosion and tectonics at the margins of continental plateaus , 1994 .

[36]  J. Curray Sediment volume and mass beneath the Bay of Bengal , 1994 .

[37]  P. Molnar,et al.  The interpretation of inverted metamorphic isograds using simple physical calculations , 1993 .

[38]  K. Nishiizumi,et al.  Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides , 1992 .

[39]  J. Syvitski,et al.  Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers , 1992, The Journal of Geology.

[40]  D. Burbank Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin , 1992, Nature.

[41]  D. Lal,et al.  Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models , 1991 .

[42]  Peter Molnar,et al.  Surface uplift, uplift of rocks, and exhumation of rocks , 1990 .

[43]  P. Molnar,et al.  Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? , 1990, Nature.

[44]  P. Pinet,et al.  Continental erosion and large‐scale relief , 1988 .

[45]  E. Herren Zanskar shear zone: Northeast-southwest extension within the Higher Himalayas (Ladakh, India) , 1987 .

[46]  M. Bickle,et al.  The transport of heat and matter by fluids during metamorphism , 1987 .

[47]  S. K. Pal Geomorphology of River Terraces Along Alaknanda Valley, Garhwal Himalaya , 1986 .

[48]  D. Lal,et al.  Tracing quartz through the environment , 1985 .

[49]  P. England,et al.  A preliminary thermal model for regional metamorphism in the Eastern Alps , 1975 .

[50]  F. Ahnert Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins , 1970 .

[51]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[52]  C. France‐Lanord,et al.  Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes , 2001 .

[53]  D. Burbank,et al.  Ar/Ar Single Crystal White Mica Ages for Himalayan Erosion, Exhumation and Provenance Studies , 2000 .

[54]  J. Walker,et al.  Thermal and mechanical models for the structural and metamorphic evolution of the Zanskar High Himalaya , 1999, Geological Society, London, Special Publications.

[55]  M. Sharma,et al.  Quaternary glacial history of NW Garhwal, Central himalayas , 1996 .

[56]  R. Stallard,et al.  Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico , 1995 .

[57]  R. Metcalfe Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan Slab in the Garhwal Himalaya , 1993, Geological Society, London, Special Publications.

[58]  Philippe Fullsack,et al.  Erosional control of active compressional orogens , 1992 .

[59]  T. Harrison,et al.  A Late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism: Earth and Planetary , 1992 .