Molecular Properties through Polarizable Embedding

Abstract We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE-DFT) formalism. In addition, we discuss some illustrative applications related to the calculation of nuclear magnetic resonance parameters, nonlinear optical properties, and electronic excited states in solution.

[1]  Mark S. Gordon,et al.  The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry , 2001 .

[2]  D. Truhlar,et al.  QM/MM: what have we learned, where are we, and where do we go from here? , 2007 .

[3]  Roland Lindh,et al.  Accuracy of distributed multipoles and polarizabilities: Comparison between the LoProp and MpProp models , 2007, J. Comput. Chem..

[4]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[5]  K. Ruud,et al.  Multiconfigurational self-consistent field linear response for the polarizable continuum model: Theory and application to ground and excited-state polarizabilities of para-nitroaniline in solution , 2003 .

[6]  Haibo Yu,et al.  Accounting for polarization in molecular simulation , 2005, Comput. Phys. Commun..

[7]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[8]  Jacob Kongsted,et al.  Density functional self-consistent quantum mechanics/molecular mechanics theory for linear and nonlinear molecular properties: Applications to solvated water and formaldehyde. , 2007, The Journal of chemical physics.

[9]  Anders Wallqvist,et al.  A molecular dynamics study of polarizable water , 1989 .

[10]  Paweł Sałek,et al.  Density-functional theory of linear and nonlinear time-dependent molecular properties , 2002 .

[11]  Paweł Sałek,et al.  Cubic response functions in time-dependent density functional theory. , 2005, The Journal of chemical physics.

[12]  M. Ratner Molecular electronic-structure theory , 2000 .

[13]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[14]  Roland Lindh,et al.  Local properties of quantum chemical systems: the LoProp approach. , 2004, The Journal of chemical physics.

[15]  J. Gao,et al.  A priori evaluation of aqueous polarization effects through Monte Carlo QM-MM simulations. , 1992, Science.

[16]  Jan H. Jensen,et al.  Chapter 10 The Effective Fragment Potential: A General Method for Predicting Intermolecular Interactions , 2007 .

[17]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[18]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[19]  Trygve Helgaker,et al.  Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals , 1994 .

[20]  Kurt V. Mikkelsen,et al.  A multiconfiguration self‐consistent reaction field response method , 1994 .

[21]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[22]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[23]  U. Singh,et al.  A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl− exchange reaction and gas phase protonation of polyethers , 1986 .

[24]  I. Renge Solvent dependence of n-pi* absorption in acetone. , 2009, The journal of physical chemistry. A.

[25]  U. Ryde,et al.  Unraveling the similarity of the photoabsorption of deprotonated p-coumaric acid in the gas phase and within the photoactive yellow protein. , 2011, Physical chemistry chemical physics : PCCP.

[26]  Kenneth Ruud,et al.  Nuclear magnetic shielding constants of liquid water: insights from hybrid quantum mechanics/molecular mechanics models. , 2007, The Journal of chemical physics.

[27]  W. L. Jorgensen Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water , 2002 .

[28]  William L Jorgensen,et al.  Special Issue on Polarization. , 2007, Journal of chemical theory and computation.

[29]  Paweł Sałek,et al.  Dalton, a molecular electronic structure program , 2005 .

[30]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[31]  Trygve Helgaker,et al.  Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants , 1999 .

[32]  T. Helgaker,et al.  An electronic Hamiltonian for origin independent calculations of magnetic properties , 1991 .

[33]  Kristian O. Sylvester-Hvid,et al.  Nonlinear optical response of molecules in a nonequilibrium solvation model , 1998 .

[34]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[35]  T. Keith,et al.  A comparison of models for calculating nuclear magnetic resonance shielding tensors , 1996 .

[36]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[37]  Jacob Kongsted,et al.  Excited States in Solution through Polarizable Embedding , 2010 .

[38]  M. Gordon,et al.  Solvent effects on optical properties of molecules: a combined time-dependent density functional theory/effective fragment potential approach. , 2008, The Journal of chemical physics.

[39]  K. Ruud,et al.  Solvent effects on zero-point vibrational corrections to optical rotations and nuclear magnetic resonance shielding constants , 2008 .

[40]  M. Karplus,et al.  Molecular Properties from Combined QM/MM Methods. 2. Chemical Shifts in Large Molecules , 2000 .

[41]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[42]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[43]  H. F. Hameka Theory of Magnetic Properties of Molecules with Particular Emphasis on the Hydrogen Molecule , 1962 .

[44]  Anthony J. Stone,et al.  The Theory of Intermolecular Forces , 2013 .

[45]  Kurt V. Mikkelsen,et al.  Modelling spectroscopic properties of large molecular systems. The combined Density Functional Theory/Molecular Mechanics approach , 2007, J. Comput. Methods Sci. Eng..