Ewald summation of electrostatic multipole interactions up to the quadrupolar level
暂无分享,去创建一个
[1] Henry Margenau,et al. Theory of intermolecular forces , 1969 .
[2] William H. Press,et al. Numerical recipes , 1990 .
[3] M. Neumann. The dielectric constant of water. Computer simulations with the MCY potential , 1985 .
[4] Elvira Guàrdia,et al. Dielectric properties and infrared spectra of liquid water: Influence of the dynamic cross correlations , 1994 .
[5] Per Linse,et al. Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities , 2000 .
[6] William A. Goddard,et al. Fast Ewald sums for general van der Waals potentials , 1997 .
[7] Douglas J. Tobias,et al. Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry , 2001 .
[8] G. Chiarotti,et al. Physics of iron at Earth's core conditions , 2000, Science.
[9] M. Berkowitz,et al. Ewald summation for systems with slab geometry , 1999 .
[10] G. Peckham,et al. Lattice dynamics of magnesium oxide , 1970 .
[11] James E. Roberts,et al. BOUNDARY CONDITIONS IN SIMULATIONS OF AQUEOUS IONIC SOLUTIONS : A SYSTEMATIC STUDY , 1995 .
[12] P. Madden,et al. Quadrupole Polarization in Simulations of Ionic Systems: Application to AgCl , 1996 .
[13] P. Madden,et al. Evaluation of the many-body contributions to the interionic interactions in MgO , 1998 .
[14] S. Nosé,et al. Constant pressure molecular dynamics for molecular systems , 1983 .
[15] P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .
[16] P. Fowler,et al. Light scattering by alkali halide melts: A computer simulation study , 1991 .
[17] A. Stone,et al. Towards an accurate intermolecular potential for water , 1992 .
[18] Gerhard Hummer,et al. Ion sizes and finite-size corrections for ionic-solvation free energies , 1997 .
[19] J. Perram,et al. Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[20] Heyes. Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries. , 1994, Physical review. B, Condensed matter.
[21] H. Kornfeld. Die Berechnung elektrostatischer Potentiale und der Energie von Dipol- und Quadrupolgittern , 1924 .
[22] Wilson,et al. Transferable model for the atomistic simulation of Al2O3. , 1996, Physical review. B, Condensed matter.
[23] T. Arias,et al. Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .
[24] J. Banavar,et al. Computer Simulation of Liquids , 1988 .
[25] P. Madden,et al. Interionic potentials from ab initio molecular dynamics: The alkaline earth oxides CaO, SrO, and BaO , 2003 .
[26] P. Madden,et al. Molecular dynamics simulations of the liquid–vapor interface of a molten salt. III. Size asymmetry effects and binary mixtures , 2002 .
[27] P. Fowler,et al. Dipole and quadrupole polarization in ionic systems: Ab initio studies , 1999 .
[28] J. Alejandre,et al. Computer simulations of liquid/vapor interface in Lennard-Jones fluids: Some questions and answers , 1999 .
[29] W. E. Lee,et al. Structural and electron diffraction data for sapphire (α-al2o3) , 1985 .
[30] P. Madden,et al. A transferable interatomic potential for MgO from ab initio molecular dynamics , 2002 .
[31] L. Dang,et al. Molecular Mechanism of Ion Binding to the Liquid/Vapor Interface of Water , 2002 .
[32] Y. Levin,et al. Surface tension of strong electrolytes , 2001 .