Sequential Design and Active Control

[1]  S. Silvey,et al.  A sequentially constructed design for estimating a nonlinear parametric function , 1980 .

[2]  H. Wynn The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .

[3]  Changbao Wu,et al.  Asymptotic inference from sequential design in a nonlinear situation , 1985 .

[4]  R. Curry,et al.  A new algorithm for suboptimal stochastic control , 1969 .

[5]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[6]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[7]  D. S. Bayard A forward method for optimal stochastic nonlinear and adaptive control , 1991 .

[8]  R. Bellman Dynamic programming. , 1957, Science.

[9]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[10]  Eric Walter,et al.  Dual Control of Linearly Parameterised Models via Prediction of Posterior Densities , 1996, Eur. J. Control.

[11]  Werner G. Müller,et al.  batch sequential design for a nonlinear estimation problem , 1989 .

[12]  H. Chernoff Sequential Analysis and Optimal Design , 1987 .

[13]  Andrej Pázman,et al.  Second-order approximation of the entropy in nonlinear least-squares estimation , 1994, Kybernetika.

[14]  C Kulcsár,et al.  Optimal experimental design and therapeutic drug monitoring. , 1994, International journal of bio-medical computing.

[15]  Martin B. Zarrop,et al.  Optimal experiment design for dynamic system identification , 1977 .

[16]  H. Witsenhausen,et al.  A comparison of closed-loop and open-loop optimum systems , 1966 .

[17]  D. Titterington,et al.  Inference and sequential design , 1985 .

[18]  E. Walter,et al.  An actively adaptive control policy for linear models , 1996, IEEE Trans. Autom. Control..

[19]  Andrej Pázman,et al.  Nonlinear experimental design based on the distribution of estimators , 1992 .

[20]  W. J. Runggaldier Concepts of Optimality in Stochastic Control , 1993 .