Application of Optimized BPNN Based on QGA in PID Control of Coal Mine Detection Robots

This thesis regards TUT-CMDR type coal mine detection robots as the research object and put forward an application of optimized BP neural network based on Quantum Genetic Algorithm in PID Control of motor speed. Transfer function model of speed control system of TUT-CMDR motor was established. Firstly, initial weights and thresholds of BP neural network were optimized by Quantum Genetic Algorithm, and then BP neural network was designed to adjust the parameters of PID on line. Finally, the results show that the algorithm is feasible and superiority.