Fast algorithms for signal reconstruction without phase
暂无分享,去创建一个
Bernhard G. Bodmann | Peter G. Casazza | Dan Edidin | Radu Balan | R. Balan | P. Casazza | D. Edidin | B. Bodmann
[1] Biing-Hwang Juang,et al. Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.
[2] Claudio Becchetti,et al. Speech Recognition: Theory and C++ Implementation , 1999 .
[3] A. Calderbank,et al. Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .
[4] John H. L. Hansen,et al. Discrete-Time Processing of Speech Signals , 1993 .
[5] J. Seidel,et al. QUADRATIC FORMS OVER GF(2) , 1973 .
[6] J. Seidel,et al. Spherical codes and designs , 1977 .
[7] Peter G. Casazza,et al. Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..
[8] M. Hayes. The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform , 1982 .
[9] J. Seidel,et al. QUADRATIC FORMS OVER GF(2) , 1973 .
[10] R. Balan. Equivalence relations and distances between Hilbert frames , 1999 .
[11] V. Paulsen,et al. Frames, graphs and erasures , 2004, math/0406134.
[12] Vivek K Goyal,et al. Quantized Frame Expansions with Erasures , 2001 .
[13] L. Ballentine,et al. Quantum Theory: Concepts and Methods , 1994 .
[14] A. Robert Calderbank,et al. The Finite Heisenberg-Weyl Groups in Radar and Communications , 2006, EURASIP J. Adv. Signal Process..
[15] Deguang Han,et al. Frames, bases, and group representations , 2000 .
[16] Joseph M. Renes,et al. Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.
[17] J R Fienup,et al. Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.
[18] T. Willmore. FOUNDATIONS OF DIFFERENTIABLE MANIFOLDS AND LIE GROUPS (Graduate Texts in Mathematics, 94) , 1984 .
[19] R. Balan,et al. On signal reconstruction without phase , 2006 .
[20] V. Paulsen,et al. Optimal frames for erasures , 2004 .
[21] R. Balan,et al. Painless Reconstruction from Magnitudes of Frame Coefficients , 2009 .
[22] Andreas Klappenecker,et al. Mutually unbiased bases are complex projective 2-designs , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[23] Peter G. Casazza,et al. Fourier Transforms of Finite Chirps , 2006, EURASIP J. Adv. Signal Process..
[24] J R Fienup,et al. Phase retrieval algorithms: a comparison. , 1982, Applied optics.
[25] Peter G. Casazza,et al. Equivalence of Reconstruction From the Absolute Value of the Frame Coefficients to a Sparse Representation Problem , 2007, IEEE Signal Processing Letters.
[26] B. Bodmann. Optimal linear transmission by loss-insensitive packet encoding☆ , 2007 .
[27] C. L. Nikias,et al. Algorithms for Statistical Signal Processing , 2002 .
[28] P G Cazassa,et al. FRAMES OF SUBSPACES. WAVELETS, FRAMES AND OPERATOR THEORY , 2004 .
[29] Gonhsin Liu. Fourier phase retrieval algorithm with noise constraints , 1990, Signal Process..
[30] P. Casazza,et al. Robustness of Fusion Frames under Erasures of Subspaces and of Local Frame Vectors , 2007 .
[31] Vivek K. Goyal,et al. Filter bank frame expansions with erasures , 2002, IEEE Trans. Inf. Theory.
[32] D. Ruelle,et al. Review: R. F. Streater and A. S. Wightman, PCT, Spin and statistics, and all that , 1965 .
[33] R.H.T. Bates,et al. The Status of Practical Fourier Phase Retrieval , 1986 .
[34] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[35] P. Casazza,et al. Fusion frames and distributed processing , 2006, math/0605374.