Fast algorithms for signal reconstruction without phase

We derive fast algorithms for doing signal reconstruction without phase. This type of problem is important in signal processing, especially speech recognition technology, and has relevance for state tomography in quantum theory. We show that a generic frame gives reconstruction from the absolute value of the frame coefficients in polynomial time. An improved efficiency of reconstruction is obtained with a family of sparse frames or frames associated with complex projective 2-designs.

[1]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[2]  Claudio Becchetti,et al.  Speech Recognition: Theory and C++ Implementation , 1999 .

[3]  A. Calderbank,et al.  Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .

[4]  John H. L. Hansen,et al.  Discrete-Time Processing of Speech Signals , 1993 .

[5]  J. Seidel,et al.  QUADRATIC FORMS OVER GF(2) , 1973 .

[6]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[7]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[8]  M. Hayes The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform , 1982 .

[9]  J. Seidel,et al.  QUADRATIC FORMS OVER GF(2) , 1973 .

[10]  R. Balan Equivalence relations and distances between Hilbert frames , 1999 .

[11]  V. Paulsen,et al.  Frames, graphs and erasures , 2004, math/0406134.

[12]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[13]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[14]  A. Robert Calderbank,et al.  The Finite Heisenberg-Weyl Groups in Radar and Communications , 2006, EURASIP J. Adv. Signal Process..

[15]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[16]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[17]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[18]  T. Willmore FOUNDATIONS OF DIFFERENTIABLE MANIFOLDS AND LIE GROUPS (Graduate Texts in Mathematics, 94) , 1984 .

[19]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[20]  V. Paulsen,et al.  Optimal frames for erasures , 2004 .

[21]  R. Balan,et al.  Painless Reconstruction from Magnitudes of Frame Coefficients , 2009 .

[22]  Andreas Klappenecker,et al.  Mutually unbiased bases are complex projective 2-designs , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[23]  Peter G. Casazza,et al.  Fourier Transforms of Finite Chirps , 2006, EURASIP J. Adv. Signal Process..

[24]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[25]  Peter G. Casazza,et al.  Equivalence of Reconstruction From the Absolute Value of the Frame Coefficients to a Sparse Representation Problem , 2007, IEEE Signal Processing Letters.

[26]  B. Bodmann Optimal linear transmission by loss-insensitive packet encoding☆ , 2007 .

[27]  C. L. Nikias,et al.  Algorithms for Statistical Signal Processing , 2002 .

[28]  P G Cazassa,et al.  FRAMES OF SUBSPACES. WAVELETS, FRAMES AND OPERATOR THEORY , 2004 .

[29]  Gonhsin Liu Fourier phase retrieval algorithm with noise constraints , 1990, Signal Process..

[30]  P. Casazza,et al.  Robustness of Fusion Frames under Erasures of Subspaces and of Local Frame Vectors , 2007 .

[31]  Vivek K. Goyal,et al.  Filter bank frame expansions with erasures , 2002, IEEE Trans. Inf. Theory.

[32]  D. Ruelle,et al.  Review: R. F. Streater and A. S. Wightman, PCT, Spin and statistics, and all that , 1965 .

[33]  R.H.T. Bates,et al.  The Status of Practical Fourier Phase Retrieval , 1986 .

[34]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[35]  P. Casazza,et al.  Fusion frames and distributed processing , 2006, math/0605374.