Latency versus survivability in geo-distributed data center design

A hot topic in data center design is to envision geo-distributed architectures spanning a few sites across wide area networks, allowing more proximity to the end users and higher survivability, defined as the capacity of a system to operate after failures. As a shortcoming, this approach is subject to an increase of latency between servers, caused by their geographic distances. In this paper, we address the trade-off between latency and survivability in geo-distributed data centers, through the formulation of an optimization problem. Simulations considering realistic scenarios show that the latency increase is significant only in the case of very strong survivability requirements, whereas it is negligible for moderate survivability requirements. For instance, the worst-case latency is less than 4 ms when guaranteeing that 80% of the servers are available after a failure, in a network where the latency could be up to 33 ms.