Active-Set Reduced-Space Methods with Nonlinear Elimination for Two-Phase Flow Problems in Porous Media

Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate ...

[1]  K. H. Coats,et al.  IMPES Stability: The CFL Limit , 2003 .

[2]  Xiao-Chuan Cai,et al.  A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations , 2005 .

[3]  Dalila Loudyi 2D finite volume model for groundwater flow simulations : integrating non-orthogonal grid capability into modflow , 2005 .

[4]  Martin J. Gander,et al.  Nonlinear Preconditioning: How to Use a Nonlinear Schwarz Method to Precondition Newton's Method , 2016, SIAM J. Sci. Comput..

[5]  Todd S. Munson,et al.  Flexible complementarity solvers for large-scale applications , 2003, Optim. Methods Softw..

[6]  Karl Kunisch,et al.  The primal–dual active set method for a crack problem with non‐penetration , 2004 .

[7]  Pengtao Sun,et al.  Fast Numerical Simulation of Two-Phase Transport Model in the Cathode of a Polymer Electrolyte Fuel Cell , 2009 .

[8]  Zhangxin Chen,et al.  An Improved IMPES Method for Two-Phase Flow in Porous Media , 2004 .

[9]  Kazufumi Ito,et al.  The Primal-Dual Active Set Method for Nonlinear Optimal Control Problems with Bilateral Constraints , 2004, SIAM J. Control. Optim..

[10]  L. Young,et al.  A Generalized Compositional Approach for Reservoir Simulation , 1983 .

[11]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[12]  Peter Kulchyski and , 2015 .

[13]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[14]  Hussein Hoteit,et al.  Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures , 2008 .

[15]  James F. Blowey,et al.  Curvature Dependent Phase Boundary Motion and Parabolic Double Obstacle Problems , 1993 .

[16]  Lulu Liu,et al.  Field-Split Preconditioned Inexact Newton Algorithms , 2015, SIAM J. Sci. Comput..

[17]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[18]  Yuanle Ma,et al.  Computational methods for multiphase flows in porous media , 2007, Math. Comput..

[19]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[20]  Xiao-Chuan Cai,et al.  Inexact Newton Methods with Restricted Additive Schwarz Based Nonlinear Elimination for Problems with High Local Nonlinearity , 2011, SIAM J. Sci. Comput..

[21]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[22]  David W. Zingg,et al.  Parallel Newton–Krylov–Schur Flow Solver for the Navier–Stokes Equations , 2013 .

[23]  Paul J. Lanzkron,et al.  An Analysis of Approximate Nonlinear Elimination , 1996, SIAM J. Sci. Comput..

[24]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[25]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[26]  David E. Keyes,et al.  Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..

[27]  L. Lake,et al.  Enhanced Oil Recovery , 2017 .

[28]  Luca F. Pavarino,et al.  A Scalable Newton--Krylov--Schwarz Method for the Bidomain Reaction-Diffusion System , 2009, SIAM J. Sci. Comput..

[29]  Abbas Firoozabadi,et al.  Comparison of fully implicit and IMPES formulations for simulation of water injection in fractured and unfractured media , 2007 .

[30]  Axel Klawonn,et al.  Nonlinear FETI-DP and BDDC Methods , 2014, SIAM J. Sci. Comput..

[31]  C. Los OPTION PRICING I , 2000 .

[32]  Stein Krogstad,et al.  Open-source MATLAB implementation of consistent discretisations on complex grids , 2012, Computational Geosciences.

[33]  Shuyu Sun,et al.  Compositional modeling of three‐phase flow with gravity using higher‐order finite element methods , 2011 .

[34]  Xiao-Chuan Cai,et al.  A Parallel Adaptive Nonlinear Elimination Preconditioned Inexact Newton for Transonic Full Potential Flow Problems , 2013 .

[35]  Francisco Facchinei,et al.  The Semismooth Algorithm for Large Scale Complementarity Problems , 2001, INFORMS J. Comput..

[36]  Pierre Gosselet,et al.  A Nonlinear Dual-Domain Decomposition Method: Application to Structural Problems with Damage , 2008 .

[37]  Xiao-Chuan Cai,et al.  TWO-LEVEL NONLINEAR ELIMINATION BASED PRECONDITIONERS FOR INEXACT NEWTON METHODS WITH APPLICATION IN SHOCKED DUCT FLOW CALCULATION , 2010 .

[38]  Andy M. Yip,et al.  A primal-dual active-set algorithm for bilaterally constrained total variation deblurring and piecewise constant Mumford-Shah segmentation problems , 2009, Adv. Comput. Math..

[39]  Chao Yang,et al.  A Scalable Fully Implicit Compressible Euler Solver for Mesoscale Nonhydrostatic Simulation of Atmospheric Flows , 2014, SIAM J. Sci. Comput..

[40]  Hamdi A. Tchelepi,et al.  Potential-based reduced Newton algorithm for nonlinear multiphase flow in porous media , 2007, J. Comput. Phys..

[41]  Shuyu Sun,et al.  A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation , 2010 .

[42]  Mary F. Wheeler,et al.  A parallel, implicit, cell‐centered method for two‐phase flow with a preconditioned Newton–Krylov solver , 1997 .

[43]  Yu-Shu Wu,et al.  A Generalized Numerical Approach for Modeling Multiphase Flow and Transport in Fractured Porous Media , 2009 .

[44]  Matthew G. Knepley,et al.  Composing Scalable Nonlinear Algebraic Solvers , 2015, SIAM Rev..

[45]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[46]  Andy M. Yip,et al.  A Primal-Dual Active-Set Method for Non-Negativity Constrained Total Variation Deblurring Problems , 2007, IEEE Transactions on Image Processing.

[47]  William Gropp,et al.  Parallel Newton-Krylov-Schwarz Algorithms for the Transonic Full Potential Equation , 1996, SIAM J. Sci. Comput..

[48]  JISHENG KOU,et al.  Convergence of Discontinuous Galerkin Methods for Incompressible Two-Phase Flow in Heterogeneous Media , 2013, SIAM J. Numer. Anal..

[49]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[50]  Lulu Liu,et al.  Fully Implicit Two-phase Reservoir Simulation with the Additive Schwarz Preconditioned Inexact Newton Method , 2013 .

[51]  C. H. Stewart,et al.  A New Approach to the Two-Dimensional Multiphase Reservoir Simulator , 1966 .

[52]  B. V. Leer,et al.  Experiments with implicit upwind methods for the Euler equations , 1985 .

[53]  Eirik Keilegavlen,et al.  Domain decomposition strategies for nonlinear flow problems in porous media , 2013, J. Comput. Phys..

[54]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[55]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[56]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[57]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[58]  A. Firoozabadi,et al.  Control‐volume method for numerical simulation of two‐phase immiscible flow in two‐ and three‐dimensional discrete‐fractured media , 2004 .