Plaquette Singlet Transition, Magnetic Barocaloric Effect, and Spin Supersolidity in the Shastry-Sutherland Model

Inspired by recent experimental measurements [Guo \textit{et al.}, Phys. Rev. Lett.~\textbf{124}, 206602 (2020); Jim\'enez \textit{et al.}, Nature \textbf{592}, 370 (2021)] on frustrated quantum magnet SrCu$_2$(BO$_3$)$_2$ under combined pressure and magnetic fields, we study the related spin-$1/2$ Shastry-Sutherland (SS) model using state-of-the-art tensor network methods. By calculating thermodynamics, correlations and susceptibilities, we find, in zero magnetic field, not only a line of first-order plaquette-singlet (PS) to dimer-singlet phase transition ending with a critical point, but also signatures of the ordered PS transition with its critical endpoint terminating on this first-order line. Moreover, we uncover prominent magnetic barocaloric responses, a novel type of quantum correlation induced cooling effect, in the strongly fluctuating supercritical regime. Under finite fields, we identify a quantum phase transition from the PS phase to the spin supersolid phase that breaks simultaneously lattice translational and spin rotational symmetries. The present findings on the SS model are accessible in current experiments and would shed new light on exotic critical and supercritical phenomena in archetypal frustrated quantum magnets.

[1]  R. Yu,et al.  Plaquette valence bond solid to antiferromagnet transition and deconfined quantum critical point of the Shastry-Sutherland model , 2023, Physical Review B.

[2]  Bin-Bin Chen,et al.  Tangent Space Approach for Thermal Tensor Network Simulations of the 2D Hubbard Model. , 2022, Physical review letters.

[3]  H. Kageyama,et al.  Unveiling new quantum phases in the Shastry-Sutherland compound SrCu2(BO3)2 up to the saturation magnetic field , 2022, Nature communications.

[4]  Y. Wan,et al.  Spin supersolidity in nearly ideal easy-axis triangular quantum antiferromagnet Na2BaCo(PO4)2 , 2022, npj Quantum Materials.

[5]  A. Sandvik,et al.  Quantum Spin Liquid Phase in the Shastry-Sutherland Model Detected by an Improved Level Spectroscopic Method , 2022, Chinese Physics Letters.

[6]  A. Sandvik,et al.  Proximate deconfined quantum critical point in SrCu2(BO3)2 , 2022, Science.

[7]  Yuan Gao,et al.  Spin supersolidity in nearly ideal easy-axis triangular quantum antiferromagnet Na2BaCo(PO4)2 , 2022, npj Quantum Materials.

[8]  Z. Y. Xie,et al.  First-order transition between the plaquette valence bond solid and antiferromagnetic phases of the Shastry-Sutherland model , 2021, 2111.07368.

[9]  E. Zhao,et al.  Rise and fall of plaquette order in the Shastry-Sutherland magnet revealed by pseudofermion functional renormalization group , 2021, Physical Review B.

[10]  Panos K. Chrysanthis,et al.  Signatures , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[11]  D. Graf,et al.  Discovery of quantum phases in the Shastry-Sutherland compound SrCu2(BO3)2 under extreme conditions of field and pressure , 2021, Nature Communications.

[12]  Yuan Gao,et al.  Identification of magnetic interactions and high-field quantum spin liquid in α-RuCl3 , 2021, Nature Communications.

[13]  A. Honecker,et al.  Quantum Monte Carlo simulations in the trimer basis: first-order transitions and thermal critical points in frustrated trilayer magnets , 2021, SciPost Physics.

[14]  A. Sandvik,et al.  Quantum criticality and spin liquid phase in the Shastry-Sutherland model , 2021, Physical Review B.

[15]  T. Shimokawa Signatures of finite-temperature mirror symmetry breaking in the S=12 Shastry-Sutherland model , 2020, 2012.15546.

[16]  Wei Li,et al.  Learning the Effective Spin Hamiltonian of a Quantum Magnet , 2020, Chinese Physics Letters.

[17]  A. Honecker,et al.  A quantum magnetic analogue to the critical point of water , 2020, Nature.

[18]  H. Diep,et al.  Frustrated Spin Systems , 2020 .

[19]  Liling Sun,et al.  Quantum Phases of SrCu2(B03)2 from High-Pressure Thermodynamics , 2020, Bulletin of the Chinese Academy of Sciences.

[20]  A. Weichselbaum X-symbols for non-Abelian symmetries in tensor networks , 2019, 1910.13736.

[21]  S. Gvasaliya,et al.  Sign switching of dimer correlations in SrCu2(BO3)2 under hydrostatic pressure , 2019, Physical Review Research.

[22]  Z. Meng,et al.  Kosterlitz-Thouless melting of magnetic order in the triangular quantum Ising material TmMgGaO4 , 2019, Nature Communications.

[23]  A. Honecker,et al.  Thermodynamic properties of the Shastry-Sutherland model throughout the dimer-product phase , 2019, Physical Review Research.

[24]  R. Cava,et al.  Quantum spin liquids , 2019, Science.

[25]  A. Sandvik,et al.  Quantum Phases of SrCu_{2}(BO_{3})_{2} from High-Pressure Thermodynamics. , 2019, Physical review letters.

[26]  A. Vishwanath,et al.  Signatures of a Deconfined Phase Transition on the Shastry-Sutherland Lattice: Applications to Quantum Critical SrCu2(BO3)2 , 2019, Physical Review X.

[27]  A. Weichselbaum,et al.  Thermal tensor renormalization group simulations of square-lattice quantum spin models , 2019, Physical Review B.

[28]  I. Niesen,et al.  Competition between intermediate plaquette phases in SrCu2 ( BO3)2 under pressure , 2019, Physical Review B.

[29]  Mark Voorneveld,et al.  Preparation , 2018, Games Econ. Behav..

[30]  A. Honecker,et al.  Thermodynamic properties of the Shastry-Sutherland model from quantum Monte Carlo simulations , 2018, Physical Review B.

[31]  Wei Li,et al.  Exponential Thermal Tensor Network Approach for Quantum Lattice Models , 2017, Physical Review X.

[32]  Lei Chen,et al.  Bilayer linearized tensor renormalization group approach for thermal tensor networks , 2016, 1612.01896.

[33]  A. Parker,et al.  Topological triplon modes and bound states in a Shastry–Sutherland magnet , 2016, Nature Physics.

[34]  Wei Li,et al.  Series-expansion thermal tensor network approach for quantum lattice models , 2016, 1609.01263.

[35]  Yi Zhou,et al.  Quantum spin liquid states , 2016, 1607.03228.

[36]  A. Saúl Magnetic nanopantograph in the in SrCu$_2$(BO$_3$)$_2$ Shastry-Sutherland lattice , 2016 .

[37]  M. Ellerby,et al.  4-spin plaquette singlet state in the Shastry–Sutherland compound SrCu2(BO3)2 , 2016, Nature Physics.

[38]  Guillaume Radtke,et al.  Magnetic Nanopantograph in the SrCu₂(BO₃)₂ Shastry-Sutherland Lattice , 2015 .

[39]  Ivan Oseledets,et al.  Unifying time evolution and optimization with matrix product states , 2014, 1408.5056.

[40]  Peter J. Shirron,et al.  Applications of the magnetocaloric effect in single-stage, multi-stage and continuous adiabatic demagnetization refrigerators , 2014 .

[41]  H. Stanley,et al.  Behavior of the Widom line in critical phenomena. , 2014, Physical review letters.

[42]  Philippe Corboz,et al.  Tensor network study of the Shastry-Sutherland model in zero magnetic field , 2012, 1212.2983.

[43]  Takafumi J. Suzuki,et al.  Study of the Shastry Sutherland Model Using Multi-scale Entanglement Renormalization Ansatz , 2012, 1212.1999.

[44]  Andreas Weichselbaum,et al.  Non-abelian symmetries in tensor networks: A quantum symmetry space approach , 2012, 1202.5664.

[45]  Steven R. White,et al.  Studying Two Dimensional Systems With the Density Matrix Renormalization Group , 2011, 1105.1374.

[46]  F. Verstraete,et al.  Time-dependent variational principle for quantum lattices. , 2011, Physical review letters.

[47]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[48]  A. Isacsson,et al.  Variational treatment of the Shastry-Sutherland antiferromagnet using projected entangled pair states. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  A. Rosch,et al.  Sign change of the Gr\"uneisen parameter and magnetocaloric effect near quantum critical points , 2006 .

[50]  A. Rosch,et al.  Sign change of the Gruneisen parameter and magnetocaloric effect near quantum critical points , 2005, cond-mat/0506336.

[51]  M. Fisher,et al.  Deconfined Quantum Critical Points , 2003, Science.

[52]  S. Miyahara,et al.  Theory of the orthogonal dimer Heisenberg spin model for SrCu2 (BO3)2 , 2003 .

[53]  H. Kageyama,et al.  ESR Study on the Excited State Energy Spectrum of SrCu2(BO3)2 –A Central Role of Multiple-Triplet Bound States– , 2002, cond-mat/0212479.

[54]  Q. Si,et al.  Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points. , 2002, Physical review letters.

[55]  M. Sigrist,et al.  Phase diagram of the quadrumerized Shastry-Sutherland model , 2002, cond-mat/0201506.

[56]  J. Oitmaa,et al.  The Phase Diagram of the Shastry-Sutherland Antiferromagnet , 2001, cond-mat/0107019.

[57]  N. Kawakami,et al.  Competing Spin-Gap Phases in a Frustrated Quantum Spin System in Two Dimensions , 2001, cond-mat/0103264.

[58]  S. Sachdev,et al.  Quantum phases of the Shastry-Sutherland antiferromagnet: Application to SrCu 2 ( BO 3 ) 2 , 2001, cond-mat/0102222.

[59]  Kawakami,et al.  Quantum phase transitions in the shastry-sutherland model for SrCu2(BO3)(2) , 2000, Physical review letters.

[60]  M. S. Singh,et al.  Exact demonstration of magnetization plateaus and first-order dimer-Neel phase transitions in a modified shastry-sutherland model for SrCu2(BO3)(2) , 1999, Physical review letters.

[61]  H. Kageyama,et al.  Exact Dimer Ground State and Quantized Magnetization Plateaus in the Two-Dimensional Spin System SrCu 2 ( BO 3 ) 2 , 1999 .

[62]  S. Miyahara,et al.  Exact Dimer Ground State of the Two Dimensional Heisenberg Spin System SrCu 2 ( BO 3 ) 2 , 1998, cond-mat/9807075.

[63]  F. Mila,et al.  First-order transition between magnetic order and valence bond order in a 2D frustrated Heisenberg model , 1995, cond-mat/9507065.

[64]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[65]  Barbosa,et al.  Phase boundaries near critical end points. III. Corrections to scaling and spherical models. , 1992, Physical review. B, Condensed matter.

[66]  Barbosa,et al.  Phase boundaries near critical end points. I. Thermodynamics and universality. , 1991, Physical review. B, Condensed matter.

[67]  Fisher,et al.  Universality and interfaces at critical end points. , 1990, Physical review letters.

[68]  B. Shastry,et al.  Exact ground state of a quantum mechanical antiferromagnet , 1981 .

[69]  H. Kageyama,et al.  The Shastry-Sutherland Compound SrCu2(BO3)2 Studied up to the Saturation Magnetic Field , 2022 .

[70]  Bin-Bin Chen,et al.  Tangent Space Approach for Thermal Tensor Network Simulations of 2D Hubbard Model , 2022 .

[71]  P. Ranke,et al.  Magnetocaloric and barocaloric effects: Theoretical description and trends , 2014 .

[72]  Shin Miyahara,et al.  Theory of the orthogonal dimer Heisenberg spin model for SrCu2 (BO3)2 , 2003 .

[73]  A. Clifford,et al.  Introduction to Supercritical Fluids and Their Applications , 2000 .

[74]  E. Manousakis The spin- 1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides , 1991 .

[75]  Ph.D Roozbeh Behroozmand,et al.  In Preparation , 1980 .