Computing exact D-optimal designs by mixed integer second-order cone programming

i=1 wiAiA T i , where Ai,i = 1,...,s are known matrices with m rows. In this paper, we show that the criterion of D-optimality is secondorder cone representable. As a result, the method of second-order cone programming can be used to compute an approximate D-optimal design with any system of linear constraints on the vector of weights. More importantly, the proposed characterization allows us to compute an exact D-optimal design, which is possible thanks to highquality branch-and-cut solvers specialized to solve mixed integer second-order cone programming problems. Our results extend to the case of the criterion of DK-optimality, which measures the quality of w for the estimation of a linear parameter subsystem defined by a full-rank coefficient matrixK. We prove that some other widely used criteria are also secondorder cone representable, for instance, the criteria of A-, AK-, Gand I-optimality. We present several numerical examples demonstrating the efficiency and general applicability of the proposed method. We show that in many cases the mixed integer second-order cone programming approach allows us to find a provably optimal exact design, while the standard heuristics systematically miss the optimum.

[1]  J. López-Fidalgo,et al.  Construction of marginally and conditionally restricted designs using multiplicative algorithms , 2007, Comput. Stat. Data Anal..

[2]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[3]  R. Cook,et al.  Marginally restricted D-optimal designs , 1980 .

[4]  Peter Rowlinson Surveys in combinatorics, 1995 , 1995 .

[5]  L. Pronzato,et al.  Algorithmic construction of optimal designs on compact sets for concave and differentiable criteria , 2014 .

[6]  L. Haines The application of the annealing algorithm to the construction of exact optimal designs for linear-regression models , 1987 .

[7]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[8]  Andrej Pázman,et al.  Foundations of Optimum Experimental Design , 1986 .

[9]  Valerii Fedorov,et al.  Design of Experiments in Statistics , 2000 .

[10]  F. Pukelsheim,et al.  Efficient rounding of approximate designs , 1992 .

[11]  Radoslav Harman Minimal efficiency of designs under the class of orthogonally invariant information criteria , 2004 .

[12]  Radoslav Harman,et al.  Computing c-optimal experimental designs using the simplex method of linear programming , 2008, Comput. Stat. Data Anal..

[13]  Radoslav Harman,et al.  Computing maximin efficient experimental designs using the methods of semidefinite programming , 2011, Metrika.

[14]  Ting Kei Pong,et al.  Methods for Optimal Experimental Designs ∗ , 2012 .

[15]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[16]  Dennis Cook,et al.  Constrained Optimization of Experimental Design , 1995 .

[17]  Peter J. Cameron,et al.  Combinatorics of optimal designs , 2008 .

[18]  Toby J. Mitchell,et al.  An Algorithm for the Construction of “D-Optimal” Experimental Designs , 2000, Technometrics.

[19]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[20]  George A. F. Seber,et al.  A matrix handbook for statisticians , 2007 .

[21]  Martina Vandebroek,et al.  Budget constrained run orders in optimum design , 2004 .

[22]  W. Welch Branch-and-Bound Search for Experimental Designs Based on D Optimality and Other Criteria , 1982 .

[23]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[24]  S. Silvey,et al.  An algorithm for optimal designs on a design space , 1978 .

[25]  Yaming Yu,et al.  D-optimal designs via a cocktail algorithm , 2009, Stat. Comput..

[26]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[27]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[28]  D'avid Papp,et al.  Optimal Designs for Rational Function Regression , 2010, 1009.1444.

[29]  Andrew Chen,et al.  A Demography of t-Optimal (n, m) Graphs Where n <= 12 , 2005, AMCS.

[30]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[31]  Jon Lee,et al.  Comparison of Spectral and Hadamard Bounds for D-Optimality , 1998 .

[32]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[33]  Editors , 1986, Brain Research Bulletin.

[34]  Radoslav Harman,et al.  Multiplicative methods for computing D-optimal stratified designs of experiments , 2014 .

[35]  Connie M. Borror,et al.  Generating and Assessing Exact G-Optimal Designs , 2010 .

[36]  Guillaume Sagnol,et al.  Computing Optimal Designs of multiresponse Experiments reduces to Second-Order Cone Programming , 2009, 0912.5467.

[37]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[38]  H. Wynn The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .

[39]  A. John Bailer,et al.  Workweek Optimization of Experimental Designs: Exact Designs for Variable Sampling Costs , 2010 .

[40]  Charles L. Suffel,et al.  On the characterization of graphs with maximum number of spanning trees , 1998, Discret. Math..

[41]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[42]  Luc Pronzato,et al.  Improvements on removing nonoptimal support points in D-optimum design algorithms , 2007, 0706.4394.

[43]  Michael J. Todd,et al.  Mathematical programming , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[44]  William G. Cochran,et al.  Experimental Designs, 2nd Edition , 1950 .

[45]  Stefanie Biedermann,et al.  On Optimal Designs for Nonlinear Models: A General and Efficient Algorithm , 2013 .

[46]  Weng Kee Wong,et al.  Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming‐Based Approach , 2015, International statistical review = Revue internationale de statistique.

[47]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[48]  Yaming Yu Monotonic convergence of a general algorithm for computing optimal designs , 2009, 0905.2646.

[49]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[50]  Anthony C. Atkinson,et al.  Optimum Experimental Designs , 1992 .

[51]  Connie M. Borror,et al.  Genetic Algorithms for the Construction of D-Optimal Designs , 2003 .

[52]  Radoslav Harman,et al.  Computing efficient exact designs of experiments using integer quadratic programming , 2014, Comput. Stat. Data Anal..

[53]  Guillaume Sagnol,et al.  On the semidefinite representation of real functions applied to symmetric matrices , 2013 .