Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition

Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V).

[1]  A. Gupta,et al.  Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology ☆ , 2000 .

[2]  Sano,et al.  A low-operating-temperature solid oxide fuel cell in hydrocarbon-Air mixtures , 2000, Science.

[3]  M. Cassir,et al.  Electrical properties of gadolinia-doped ceria thin films deposited by sputtering in view of SOFC application , 2004 .

[4]  Badrul Munir,et al.  Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets , 2007 .

[5]  Ki-Bum Kim,et al.  High‐Performance Micro‐Solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates , 2011 .

[6]  C. Peden,et al.  Electronic and Chemical Properties of Ce0.8Zr0.2O2(111) Surfaces: Photoemission, XANES, Density-Functional, and NO2 Adsorption Studies , 2001 .

[7]  K. Yoon,et al.  The effect of an ultra-thin zirconia blocking layer on the performance of a 1-μm-thick gadolinia-doped ceria electrolyte solid-oxide fuel cell , 2012 .

[8]  Ji-won Son,et al.  The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes , 2012 .

[9]  A. Manthiram,et al.  Microstructural and electrical properties of Ce_0.9Gd_0.1O1.95 thin film electrolyte in solid oxide fuel cells–CORRIGENDUM , 2011 .

[10]  L. Gauckler,et al.  Thin films for micro solid oxide fuel cells , 2007 .

[11]  F. Prinz,et al.  Application of Atomic Layer Deposition of Platinum to Solid Oxide Fuel Cells , 2008 .

[12]  Sangkyun Kang,et al.  Intermediate-temperature fuel cells with amorphous Sn0.9In0.1P2O7 thin film electrolytes , 2012 .

[13]  Joongmyeon Bae,et al.  Oxidation-resistant thin film coating on ferritic stainless steel by sputtering for solid oxide fuel cells , 2008 .

[14]  S. Licoccia,et al.  Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs) , 2008 .

[15]  E. Quartarone,et al.  A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries , 2009 .

[16]  F. Prinz,et al.  Oxygen activation over engineered surface grains on YDC/YSZ interlayered composite electrolyte for L , 2011 .

[17]  Sangkyun Kang,et al.  Low intermediate temperature ceramic fuel cell with Y-doped BaZrO3 electrolyte and thin film Pd anode on porous substrate , 2011 .

[18]  H. Yoo,et al.  Partial electronic conductivity and electrolytic domain of bilayer electrolyte Zr0.84Y0.16O1.92/Ce0.9Gd0.1O1.95 , 2011 .

[19]  Xiao-Zi Yuan,et al.  PEM Fuel Cell Fundamentals , 2008 .

[20]  Y. Takeda,et al.  Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells , 1987 .

[21]  M. Cassir,et al.  Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering , 2006 .

[22]  S. Ramanathan,et al.  Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: Electrode microstructure and stability considerations , 2011 .

[23]  M. Romeo,et al.  XPS Study of the reduction of cerium dioxide , 1993 .

[24]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[25]  S. Chan,et al.  Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process , 2006 .

[26]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[27]  E. Wachsman,et al.  Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel , 2011 .

[28]  F. Prinz,et al.  Solid oxide fuel cell with corrugated thin film electrolyte. , 2008, Nano letters.

[29]  Roy G. Gordon,et al.  Atomic Layer Deposition of Y2O3 Thin Films from Yttrium Tris(N,N‘-diisopropylacetamidinate) and Water , 2005 .

[30]  L. Gauckler,et al.  Micro Solid Oxide Fuel Cells on Glass Ceramic Substrates , 2008 .

[31]  M. Inaba,et al.  Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs , 2005 .

[32]  Jong-Hyun Han,et al.  3D CFD for chemical transport profiles in a rotating disk CVD reactor , 2010 .

[33]  Jürgen Fleig,et al.  Electrodes and electrolytes in micro-SOFCs: a discussion of geometrical constraints , 2004 .

[34]  Changrong Xia,et al.  Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing , 2001 .

[35]  Fritz B. Prinz,et al.  Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells , 2007 .