Novel chelating surfactant 5-heptyl-1,2,4-triazole-3-thione: Its synthesis and flotation separation of malachite against quartz and calcite

[1]  Jun Liu,et al.  A DFT prediction on the chemical reactivity of novel azolethione derivatives as chelating agents: Implications for copper minerals flotation and copper corrosion inhibition , 2018, Journal of the Taiwan Institute of Chemical Engineers.

[2]  Zhenghe Xu,et al.  Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation. , 2018, Journal of colloid and interface science.

[3]  Hong Zhong,et al.  The adsorption mechanism of N-butoxypropyl-S-[2-(hydroxyimino) propyl] dithiocarbamate ester to copper minerals flotation , 2017 .

[4]  K. Waters,et al.  An evaluation of hydroxamate collectors for malachite flotation , 2017 .

[5]  M. Kalichini,et al.  The role of pulp potential and the sulphidization technique in the recovery of sulphide and oxide copper minerals from a complex ore , 2017 .

[6]  Hong Zhong,et al.  Molecular design of flotation collectors: A recent progress. , 2017, Advances in colloid and interface science.

[7]  S. Wen,et al.  Copper sulfide species formed on malachite surfaces in relation to flotation , 2017 .

[8]  M. Kalichini,et al.  The recovery of oxide copper minerals from a complex copper ore by sulphidisation , 2017 .

[9]  Hong Zhong,et al.  A DFT study on the structure–reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors , 2017 .

[10]  Hong Zhong,et al.  The flotation behavior and adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester to chalcopyrite , 2017 .

[11]  Jiushuai Deng,et al.  Leaching of malachite using 5-sulfosalicylic acid , 2017 .

[12]  Wenbao Liu,et al.  Synthesis of N,N-Bis(2-hydroxypropyl)laurylamine and its flotation on quartz , 2017 .

[13]  Hongbo Zeng,et al.  In situ probing the self-assembly of 3-hexyl-4-amino-1,2,4-triazole-5-thione on chalcopyrite surfaces , 2016 .

[14]  D. R. Nagaraj,et al.  Evolution of flotation chemistry and chemicals: A century of innovations and the lingering challenges ☆ , 2016 .

[15]  Zhenghe Xu,et al.  Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation , 2016 .

[16]  Junhyun Choi,et al.  Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector , 2016 .

[17]  Wei Liu,et al.  A novel surfactant, N,N-diethyl-N′-cyclohexylthiourea: Synthesis, flotation and adsorption on chalcopyrite , 2016 .

[18]  Zhiyong Zhang,et al.  Investigation on the flotation behavior and adsorption mechanism of 3-hexyl-4-amino-1,2,4-triazole-5-thione to chalcopyrite , 2016 .

[19]  Hong Zhong,et al.  Adsorption of α-hydroxyoctyl phosphonic acid to ilmenite/water interface and its application in flotation , 2016 .

[20]  Hong Zhong,et al.  Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation , 2016 .

[21]  S. Mor,et al.  Efficient and convenient synthesis, characterization, and antimicrobial evaluation of some new tetracyclic 1,4-benzothiazines , 2016 .

[22]  Hong Zhong,et al.  A novel surfactant N-(6-(hydroxyamino)-6-oxohexyl)octanamide: Synthesis and flotation mechanisms to wolframite , 2015 .

[23]  S. K. Kushawaha,et al.  Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Co(II) complexes of 1-phenyl-1H-tetrazole-5-thiol: Synthesis, spectral, structural characterization and thermal studies , 2015 .

[24]  Hong Zhong,et al.  Flotation behavior and adsorption mechanism of α-hydroxyoctyl phosphinic acid to malachite , 2015 .

[25]  Hong Zhong,et al.  Adsorption thermodynamics and kinetics of N,N′-diisopropoxypropyl-N″,N‴-oxydiethylenedicarbonyl bis (thiourea) on chalcopyrite surfaces , 2015 .

[26]  Hongbo Zeng,et al.  Study of N-isopropoxypropyl-N'-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS. , 2015, Journal of colloid and interface science.

[27]  Zhiqiang Huang,et al.  Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1,2-bis(dimethyl-dodecyl-ammonium bromide) , 2014 .

[28]  Shuai Wang,et al.  Synthesis of 2-ethyl-2-hexenal oxime and its flotation performance for copper ore , 2014 .

[29]  S. Gaydardzhiev,et al.  Assessment of water quality effects on flotation of copper-cobalt oxide ore , 2014 .

[30]  Hong Zhong,et al.  The interaction of N-butoxypropyl-N′-ethoxycarbonylthiourea with sulfide minerals: Scanning electrochemical microscopy, diffuse reflectance infrared Fourier transform spectroscopy, and thermodynamics , 2014 .

[31]  M. Finšgar,et al.  2-Mercaptobenzoxazole as a copper corrosion inhibitor in chloride solution: Electrochemistry, 3D-profilometry, and XPS surface analysis , 2014 .

[32]  Hong Zhong,et al.  Gemini trisiloxane surfactant: Synthesis and flotation of aluminosilicate minerals , 2014 .

[33]  Yahui Zhang,et al.  FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces , 2013 .

[34]  R. Woods,et al.  The interaction of n-octanohydroxamate with chrysocolla and oxide copper surfaces , 2012 .

[35]  Teng-Wei Wang,et al.  Trimethylsilyl isothiocyanate (TMSNCS): an efficient reagent for the one-pot synthesis of mercapto-1,2,4-triazoles , 2012 .

[36]  Hongbo Zeng,et al.  Adsorption of mercaptobenzoheterocyclic compounds on sulfide mineral surfaces: A density functional theory study of structure–reactivity relations , 2012 .

[37]  S. K. Kushawaha,et al.  Studies on novel Cu(II) complexes of 5-(4-hydroxy-phenyl)-1,3,4-thiadiazole-2-thiol and 5-thiophen-2-yl-3H-1,3,4-oxadiazole-2-thione: Synthesis, spectral and structural characterization , 2012 .

[38]  Y. Wen,et al.  Electrochemical and SERS spectroscopic investigations of 4-methyl-4H-1,2,4-triazole-3-thiol monolayers self-assembled on copper surface , 2012 .

[39]  T. Deligeorgiev,et al.  An environmentally benign procedure for the synthesis of substituted 2-thiobenzothiazoles, 2-thiobenzoxazoles, 2-thiobenzimidazoles, and 1,3-oxazolopyridine-2-thiols , 2011 .

[40]  P. Buglyó,et al.  Suberoylanilide hydroxamic acid, a potent histone deacetylase inhibitor; its X-ray crystal structure and solid state and solution studies of its Zn(II), Ni(II), Cu(II) and Fe(III) complexes. , 2011, Journal of inorganic biochemistry.

[41]  R. Woods,et al.  A vibrational spectroscopy and XPS investigation of the interaction of hydroxamate reagents on copper oxide minerals , 2010 .

[42]  W. Skinner,et al.  Interaction of cuprite with dialkyl dithiophosphates , 2009 .

[43]  Haifeng Yang,et al.  Electrochemical and in situ SERS spectroelectrochemical investigations of 4‐methyl‐4H‐1, 2, 4‐triazole‐3‐thiol monolayers at a silver electrode , 2009 .

[44]  Markus A. Reuter,et al.  Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors , 2009 .

[45]  P. Plescia,et al.  Chelating reagents for flotation , 2007 .

[46]  O. Benali,et al.  Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1 M HClO4 , 2007 .

[47]  K. Rahmouni,et al.  Electrochemical and spectroscopic evidences of corrosion inhibition of bronze by a triazole derivative , 2007 .

[48]  Pradip,et al.  Molecular Modeling of Interactions of Alkyl Hydroxamates with Calcium Minerals , 2002 .

[49]  S. D. Patil,et al.  Synthesis and Antimicrobial Study of Heterocyclyl Substituted s-Triazoles, 1,3,4-Thiadiazoles, Oxadiazoles and Related Heterocycles. , 2001 .

[50]  L. Piga,et al.  Comparison of PbZn selective collectors using statistical methods , 1999 .

[51]  D. Nagaraj,et al.  Practical aspects of oxide copper recovery with alkyl hydroxamates , 1998 .

[52]  G. Micera,et al.  Equilibrium studies on copper(II)- and iron(III)-monohydroxamates , 1998 .

[53]  C. Supuran,et al.  Complexes With Biologically Active Ligands. Part 111. Synthesis and Carbonic Anhydrase Inhibitory Activity of Metal Complexes of 4,5-Disubstituted-3-Mercapto-1,2,4-Triazole Derivatives , 1998, Metal-based drugs.

[54]  B. Dobias,et al.  2-mercaptobenzothiazole and derivatives in the flotation of galena, chalcocite and sphalerite: A study of flotation, adsorption and microcalorimetry , 1997 .

[55]  D. Fuerstenau,et al.  Flotation of oxidized minerals of copper using a new synthetic chelating reagent as collector , 1997 .

[56]  R. D. Dyer,et al.  Design of 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-1,3,4-thiadiazoles, -1,3,4-oxadiazoles, and -1,2,4-triazoles as orally-active, nonulcerogenic antiinflammatory agents. , 1993, Journal of medicinal chemistry.

[57]  P. Nowak,et al.  Flotation of oxidized lead minerals with derivatives of 2-mercaptobenzothiazole. Part 1: chemical equilibria in the system 6-methyl-2-mercaptobenzothiazole-lead salts , 1991 .

[58]  Pradip,et al.  The adsorption of hydroxamate on semi-soluble minerals. Part I: Adsorption on barite, Calcite and Bastnaesite , 1983 .

[59]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[60]  F. V. Batchelder,et al.  Normal Oximes as Flotation Reagents , 1939 .