Optimal Drug Treatment in a Simple Pandemic Switched System Using Polynomial Approach

The aim of this work is to investigate the optimal control of the treatment in a simple pandemic model as a switched nonlinear system. We used a newly developed approach based on the theory of moments. This approach allows to transform a nonlinear, non-convex optimal control problem to an equivalent linear and convex one. To illustrate our finding, we used the example of influenza pandemic to compare the full treatment approach to our optimal moment and time switching solution.

[1]  G. Chowell,et al.  Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation. , 2010, Journal of theoretical biology.

[2]  S. Moghadas,et al.  Optimal control of vaccination dynamics during an influenza epidemic. , 2014, Mathematical biosciences and engineering : MBE.

[3]  J. Hyman,et al.  Transmission Dynamics of the Great Influenza Pandemic of 1918 in Geneva, Switzerland: Assessing the Effects of Hypothetical Interventions , 2022 .

[4]  A. V. Dmitruk,et al.  The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle , 2008, Syst. Control. Lett..

[5]  Delfim F. M. Torres,et al.  Mathematical Modelling, Simulation, and Optimal Control of the 2014 Ebola Outbreak in West Africa , 2015, 1503.07396.

[6]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[7]  H. Behncke Optimal control of deterministic epidemics , 2000 .

[8]  Peter E. Caines,et al.  On the Hybrid Optimal Control Problem: Theory and Algorithms , 2007, IEEE Transactions on Automatic Control.

[9]  Jean B. Lasserre,et al.  Semidefinite Programming vs. LP Relaxations for Polynomial Programming , 2002, Math. Oper. Res..

[10]  H. Sussmann,et al.  A maximum principle for hybrid optimal control problems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[11]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[12]  Pierre Riedinger,et al.  Suboptimal switched controls in context of singular arcs , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[13]  Alberto Bemporad,et al.  The explicit solution of model predictive control via multiparametric quadratic programming , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[14]  Panos J. Antsaklis,et al.  Optimal control of switched systems based on parameterization of the switching instants , 2004, IEEE Transactions on Automatic Control.

[15]  F. Brauer Age of Infection Epidemic Models , 2016 .

[16]  S. Sager Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control , 2009 .

[17]  Zhilan Feng,et al.  Modeling the Effects of Vaccination and Treatment on Pandemic Influenza , 2011, The AAPS Journal.

[18]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[19]  E. Mojica-Nava,et al.  A polynomial approach for optimal control of switched nonlinear systems , 2014 .

[20]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[21]  John T. Workman,et al.  Optimal Control Applied to Biological Models , 2007 .

[22]  F. Brauer General compartmental epidemic models , 2010 .

[23]  A. Nizam,et al.  Containing pandemic influenza with antiviral agents. , 2004, American journal of epidemiology.

[24]  Raymond A. DeCarlo,et al.  Optimal control of switching systems , 2005, Autom..

[25]  Chantal Morel,et al.  Cost-effectiveness of malaria diagnostic methods in sub-Saharan Africa in an era of combination therapy. , 2008, Bulletin of the World Health Organization.

[26]  Julien Arino,et al.  Antiviral resistance during pandemic influenza: implications for stockpiling and drug use , 2009, BMC infectious diseases.

[27]  Steve Leach,et al.  Potential impact of antiviral drug use during influenza pandemic. , 2005 .