Lattice action on the boundary of SL $(n,\mathbb{R})}$

Let $\Gamma$ be a lattice in $G={\rm SL}(n,\mathbb{R})$ and X = G/S be a homogeneous space of G, where S is a closed subgroup of G which contains a real algebraic subgroup H such that G/H is compact. We establish the uniform distribution of orbits of $\Gamma$ in X analogous to the classical equidistribution on a torus. To obtain this result, we first prove an ergodic theorem along balls in the connected component of a Borel subgroup of G.

[1]  Dmitry Kleinbock,et al.  Chapter 11 Dynamics of subgroup actions on homogeneous spaces of lie groups and applications to number theory , 2002 .

[2]  A. Good Local Analysis of Selberg's Trace Formula , 1983 .

[3]  Marina Ratner,et al.  Raghunathan’s topological conjecture and distributions of unipotent flows , 1991 .

[4]  A. Terras Harmonic Analysis on Symmetric Spaces and Applications I , 1985 .

[5]  Harry Furstenberg,et al.  A POISSON FORMULA FOR SEMI-SIMPLE LIE GROUPS* , 1963 .

[6]  S. Dani,et al.  Limit distributions of orbits of unipotent flows and values of quadratic forms , 1993 .

[7]  C. McMullen,et al.  Mixing, counting, and equidistribution in Lie groups , 1993 .

[8]  W. Schmidt The density of integer points on homogeneous varieties , 1985 .

[9]  N. Shah Limit distributions of polynomial trajectories on homogeneous spaces , 1994 .

[10]  P. Sarnak,et al.  Density of integer points on affine homogeneous varieties , 1993 .

[11]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[12]  A. Eskin,et al.  Unipotent flows and counting lattice points on homogeneous varieties , 1996 .

[13]  A. Eskin,et al.  Non-divergence of translates of certain algebraic measures , 1997 .

[14]  Marina Ratner,et al.  On Raghunathan’s measure conjecture , 1991 .

[15]  A. Eskin,et al.  UPPER BOUNDS AND ASYMPTOTICS IN A QUANTITATIVE VERSION OF THE OPPENHEIM CONJECTURE , 1998 .

[16]  Jacques Tits,et al.  Groupes Réductifs , 1965 .

[17]  Dave Witte DYNAMICAL SYSTEMS ON HOMOGENEOUS SPACES (Translations of Mathematical Monographs 190) By A LEXANDER N. S TARKOV : 243 pp., US$95.00, ISBN 0-8218-1389-7 (American Mathematical Society, Providence, RI, 2000). , 2001 .

[18]  S. Dani,et al.  Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces , 1991 .

[19]  A. Nogueira Orbit distribution on R2 under the natural action of SL(2,Z) , 2002 .

[20]  Andrei S. Rapinchuk,et al.  Algebraic groups and number theory , 1992 .

[21]  M. Raghunathan Discrete subgroups of Lie groups , 1972 .

[22]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[23]  F. Ledrappier Distribution des orbites des réseaux sur le plan réel , 1999 .