Methods for classically simulating noisy networked quantum architectures

As research on building scalable quantum computers advances, it is important to be able to certify their correctness. Due to the exponential hardness of classically simulating quantum computation, straight-forward verification via this means fails. However, we can classically simulate small scale quantum computations and hence we are able to test that devices behave as expected in this domain. This constitutes the first step towards obtaining confidence in the anticipated quantum-advantage when we extend to scales that can no longer be simulated. Real devices have restrictions due to their architecture and limitations due to physical imperfections and noise. In this paper we extend the usual ideal simulations by considering those effects. We aim to provide a general methodology and framework for constructing simulations which emulate the physical system. These simulations should provide a benchmark for realistic devices and guide experimental research in the quest for quantum-advantage. To illustrate our methodology we give examples that involve networked architectures and the noise-model of the device developed by the Networked Quantum Information Technologies Hub (NQIT). For our simulations we use, with suitable modification, the classical simulator of Bravyi and Gosset while the specific problems considered belong to the Instantaneous Quantum Polynomial-time class. This class is believed to be hard for classical computational devices, and is regarded as a promising candidate for the first demonstration of quantum-advantage. We first consider a subclass of IQP, defined by Bermejo-Vega et al, involving two-dimensional dynamical quantum simulators, and then general instances of IQP, restricted to the architecture of NQIT.

[1]  Mark Howard,et al.  Simulation of quantum circuits by low-rank stabilizer decompositions , 2018, Quantum.

[2]  Peter Selinger,et al.  Exact synthesis of multi-qubit Clifford+T circuits , 2012, ArXiv.

[3]  Simon J. Devitt,et al.  Optimization of lattice surgery is NP-hard , 2017, npj Quantum Information.

[4]  Raphaël Clifford,et al.  The Classical Complexity of Boson Sampling , 2017, SODA.

[5]  Steven Herbert On the depth overhead incurred when running quantum algorithms on near-term quantum computers with limited qubit connectivity , 2020, Quantum Inf. Comput..

[6]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[7]  Elad Eban,et al.  Interactive Proofs For Quantum Computations , 2017, 1704.04487.

[8]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[9]  Stephen Brierley,et al.  Efficient implementation of quantum circuits with limited qubit interactions , 2015, Quantum Inf. Comput..

[10]  Ashley Montanaro,et al.  Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.

[11]  Dmitri Maslov,et al.  Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.

[12]  W Dür,et al.  Completeness of the classical 2D Ising model and universal quantum computation. , 2007, Physical review letters.

[13]  Jonathan P. Dowling,et al.  An introduction to boson-sampling , 2014, 1406.6767.

[14]  Elham Kashefi,et al.  Parallelizing quantum circuits , 2007, Theor. Comput. Sci..

[15]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[16]  Andrew W. Cross,et al.  Validating quantum computers using randomized model circuits , 2018, Physical Review A.

[17]  George Siopsis,et al.  Scalar quantum field theories as a benchmark for near-term quantum computers , 2018, Physical Review A.

[18]  Scott Aaronson,et al.  The Computational Complexity of Linear Optics , 2014 .

[19]  Jens Jakob W. H. Sørensen,et al.  QEngine: A C++ library for quantum optimal control of ultracold atoms , 2018, Comput. Phys. Commun..

[20]  Travis S. Humble,et al.  Establishing the quantum supremacy frontier with a 281 Pflop/s simulation , 2019, Quantum Science and Technology.

[21]  J. Sherson,et al.  QEngine: An open-source C++ Library for Quantum Optimal Control of Ultracold Atoms , 2018 .

[22]  Krysta Marie Svore,et al.  LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing , 2014, ArXiv.

[23]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[24]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[25]  M. Bremner,et al.  Instantaneous Quantum Computation , 2008, 0809.0847.

[26]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[27]  John A. Gunnels,et al.  Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits , 2019, 1910.09534.

[28]  J Eisert,et al.  Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.

[29]  Travis S. Humble,et al.  Quantum chemistry as a benchmark for near-term quantum computers , 2019, npj Quantum Information.

[30]  Shuhei Tamate,et al.  Computational quantum-classical boundary of noisy commuting quantum circuits , 2016, Scientific Reports.

[31]  Elham Kashefi,et al.  On the Possibility of Classical Client Blind Quantum Computing , 2018, Cryptogr..

[32]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[33]  Simon C. Benjamin,et al.  Minimally complex ion traps as modules for quantum communication and computing , 2016, 1605.00111.

[34]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[35]  Anne Broadbent,et al.  How to Verify a Quantum Computation , 2015, Theory Comput..

[36]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[37]  Ryan LaRose,et al.  Overview and Comparison of Gate Level Quantum Software Platforms , 2018, Quantum.

[38]  Earl T. Campbell,et al.  An efficient quantum compiler that reduces T count , 2017, Quantum Science and Technology.

[39]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[40]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.

[41]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[42]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[43]  Rupak Biswas,et al.  A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware , 2018, npj Quantum Information.

[44]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  L. Duan,et al.  Efficient classical simulation of noisy quantum computation , 2018, 1810.03176.

[46]  A. Harrow,et al.  Efficient distributed quantum computing , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  Kenneth R. Brown,et al.  Comparison of a quantum error correction threshold for exact and approximate errors , 2014, 1501.00068.

[48]  Igor L. Markov,et al.  Quipu: High-performance simulation of quantum circuits using stabilizer frames , 2013, 2013 IEEE 31st International Conference on Computer Design (ICCD).

[49]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[50]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[51]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[52]  Igor L. Markov,et al.  Quantum Supremacy Is Both Closer and Farther than It Appears , 2018, ArXiv.

[53]  Elham Kashefi,et al.  Robustness and device independence of verifiable blind quantum computing , 2015, 1502.02571.

[54]  Andrew W. Cross,et al.  The IBM Q experience and QISKit open-source quantum computing software , 2018 .

[55]  Umesh V. Vazirani,et al.  A classical leash for a quantum system: command of quantum systems via rigidity of CHSH games , 2012, ITCS '13.

[56]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[57]  J. Emerson,et al.  Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.

[58]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[59]  E. Kashefi,et al.  Unconditionally verifiable blind quantum computation , 2012, 1203.5217.

[60]  Erik M. Ferragut,et al.  Unbiased simulation of near-Clifford quantum circuits , 2017, 1703.00111.

[61]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[62]  Tyson Jones,et al.  QuEST and High Performance Simulation of Quantum Computers , 2018, Scientific Reports.

[63]  Peter Selinger,et al.  Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..

[64]  H. Briegel,et al.  Fast simulation of stabilizer circuits using a graph-state representation , 2005, quant-ph/0504117.

[65]  Keisuke Fujii,et al.  On the hardness of classically simulating the one clean qubit model , 2013, Physical review letters.

[66]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[67]  Axel Dahlberg,et al.  SimulaQron—a simulator for developing quantum internet software , 2017, Quantum Science and Technology.

[68]  Andrew M. Childs,et al.  Circuit Transformations for Quantum Architectures , 2019, TQC.

[69]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[70]  Dan Stahlke,et al.  Quantum interference as a resource for quantum speedup , 2013, 1305.2186.

[71]  Urmila Mahadev,et al.  Classical Verification of Quantum Computations , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[72]  Eyob A. Sete,et al.  A functional architecture for scalable quantum computing , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[73]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[74]  Rupak Biswas,et al.  A flexible high-performance simulator for the verification and benchmarking of quantum circuits implemented on real hardware , 2018 .

[75]  Elham Kashefi,et al.  Delegated Pseudo-Secret Random Qubit Generator , 2018, ArXiv.

[76]  F. Schmidt-Kaler,et al.  Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation , 2017, 1705.02771.

[77]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[78]  Vlad Gheorghiu,et al.  Quantum++: A modern C++ quantum computing library , 2014, PloS one.

[79]  J. Eisert,et al.  Direct certification of a class of quantum simulations , 2016, 1602.00703.

[80]  Alba Cervera-Lierta,et al.  Quantum circuits for maximally entangled states , 2019, Physical Review A.

[81]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[82]  Daniel James Shepherd,et al.  Quantum Complexity: restrictions on algorithms and architectures , 2010, ArXiv.

[83]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[84]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[85]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[86]  L. Duan,et al.  Quantum Supremacy for Simulating a Translation-Invariant Ising Spin Model. , 2016, Physical review letters.

[87]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[88]  A. Fowler,et al.  Low overhead quantum computation using lattice surgery , 2018, 1808.06709.

[89]  Matty J Hoban,et al.  Measurement-based classical computation. , 2013, Physical review letters.

[90]  Rolando L. La Placa,et al.  How many qubits are needed for quantum computational supremacy? , 2018, Quantum.

[91]  Ashley Montanaro,et al.  Achieving quantum supremacy with sparse and noisy commuting quantum computations , 2016, 1610.01808.

[92]  Christopher Granade,et al.  Tractable Simulation of Error Correction with Honest Approximations to Realistic Fault Models , 2013, 1309.4717.

[93]  Igor L. Markov,et al.  Simulation of Quantum Circuits via Stabilizer Frames , 2015, IEEE Transactions on Computers.

[94]  Scott Aaronson,et al.  Bosonsampling is far from uniform , 2013, Quantum Inf. Comput..

[95]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[96]  Harry Buhrman,et al.  The European Quantum Technologies Roadmap , 2017, 1712.03773.

[97]  Michele Mosca,et al.  An algorithm for the T-count , 2013, Quantum Inf. Comput..

[98]  Raphaël Clifford,et al.  Classical boson sampling algorithms with superior performance to near-term experiments , 2017, Nature Physics.

[99]  Keisuke Fujii,et al.  Computational quantum-classical boundary of complex and noisy quantum systems , 2014 .

[100]  Akash Sengupta,et al.  Using Reinforcement Learning to find Efficient Qubit Routing Policies for Deployment in Near-term Quantum Computers , 2018, 1812.11619.

[101]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[102]  Elham Kashefi,et al.  Information Theoretically Secure Hypothesis Test for Temporally Unstructured Quantum Computation (Extended Abstract) , 2017, 1704.01998.

[103]  S. Aaronson,et al.  Improved simulation of stabilizer circuits (14 pages) , 2004 .

[104]  Martin Rötteler,et al.  Q#: Enabling Scalable Quantum Computing and Development with a High-level DSL , 2018, RWDSL2018.

[105]  M. Bremner,et al.  Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[106]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[107]  Alán Aspuru-Guzik,et al.  qTorch: The quantum tensor contraction handler , 2017, PloS one.

[108]  Alán Aspuru-Guzik,et al.  qHiPSTER: The Quantum High Performance Software Testing Environment , 2016, ArXiv.

[109]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[110]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[111]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[112]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[113]  Ross Duncan,et al.  On the qubit routing problem , 2019, TQC.

[114]  David G. Cory,et al.  Modeling Quantum Noise for efficient testing of fault-tolerant circuits , 2012, 1206.5407.

[115]  Joel J. Wallman,et al.  Estimating Outcome Probabilities of Quantum Circuits Using Quasiprobabilities. , 2015, Physical review letters.

[116]  Joseph Fitzsimons,et al.  Private quantum computation: an introduction to blind quantum computing and related protocols , 2016, npj Quantum Information.

[117]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[118]  Yaoyun Shi,et al.  Classical Simulation of Intermediate-Size Quantum Circuits , 2018, 1805.01450.

[119]  Gian Giacomo Guerreschi,et al.  QAOA for Max-Cut requires hundreds of qubits for quantum speed-up , 2018, Scientific Reports.

[120]  Harry Buhrman,et al.  The quantum technologies roadmap: a European community view , 2018, New Journal of Physics.

[121]  Elham Kashefi,et al.  Verification of Quantum Computation: An Overview of Existing Approaches , 2017, Theory of Computing Systems.

[122]  Cristian S. Calude,et al.  The Road to Quantum Computational Supremacy , 2017, Springer Proceedings in Mathematics & Statistics.

[123]  Elham Kashefi,et al.  On the implausibility of classical client blind quantum computing , 2017, ArXiv.

[124]  John A. Gunnels,et al.  Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction Deferral , 2017 .

[125]  Martin Schwarz,et al.  Architectures for quantum simulation showing quantum supremacy , 2017 .

[126]  Joseph Fitzsimons,et al.  Post hoc verification of quantum computation , 2015, Physical review letters.

[127]  J. Eisert,et al.  Architectures for quantum simulation showing a quantum speedup , 2017, 1703.00466.

[128]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..