Análisis genético en APC, KRAS y TP53 en pacientes con cáncer de estómago y colon

Resumen Antecedentes El cancer de estomago (CE) y colorrectal (CCR) presentan altas tasas de incidencia y mortalidad en la poblacion mundial. Estas 2 neoplasias se caracterizan por tener una gran heterogeneidad genetica. Hasta el momento, no existen estudios moleculares que analicen las mutaciones en los genes APC, KRAS y TP53 en poblacion colombiana/latinoamericana. Objetivo Analizar mutaciones en los genes APC, KRAS y TP53 en 59 pacientes con CE y CCR mediante el secuenciamiento directo. Pacientes y metodos Se estudio a 29 pacientes con CE y 30 con CCR. Se realizo un analisis de mutaciones en los 3 genes por las tecnicas de reaccion en cadena de la polimerasa y secuenciamiento directo. Resultados Se encontro una frecuencia total de mutaciones del 30.5%. El gen mas frecuentemente mutado fue APC (15.3%), seguido de KRAS (10.1%) y TP53 (5.1%). Las muestras de CCR presentaron una frecuencia de mutaciones del 46,7% y las CE del 13.3% (p = 0.006). No se encontraron mutaciones simultaneas en los 3 genes. En solo 6 muestras de tumores (10%) se detectaron mutaciones en 2 genes. Adicionalmente, se obtuvo una alta frecuencia de polimorfismos en ambos tipos de cancer, el mas comun fue el rs41115 localizado en el gen APC. Conclusion Las mutaciones en los genes APC, KRAS y TP53 fueron mas comunes en el CCR que en el CE; nuestros resultados indican la existencia de diferentes vias geneticas en la carcinogenesis del CE y del CCR, y revelan una frecuencia de mutaciones particular en los pacientes colombianos estudiados, que podria estar influida por factores ambientales y etnicos, y el estilo de vida de esta poblacion.

[1]  M. McCarthy,et al.  Strong Amerind/white sex bias and a possible Sephardic contribution among the founders of a population in northwest Colombia. , 2000, American journal of human genetics.

[2]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[3]  E. Oki,et al.  The Difference in p53 Mutations between Cancers of the Upper and Lower Gastrointestinal Tract , 2009, Digestion.

[4]  L. Bravo,et al.  Promoter DNA hypermethylation in gastric biopsies from subjects at high and low risk for gastric cancer , 2010, International journal of cancer.

[5]  T. Tuohy,et al.  Hereditary and familial colon cancer. , 2010, Gastroenterology.

[6]  M. Blanca Piazuelo,et al.  Gastric cáncer: Overview , 2013, Colombia medica.

[7]  F. Meneses-González,et al.  Risk factors for gastric cancer in Latin America: a meta-analysis , 2012, Cancer Causes & Control.

[8]  C. O'Morain,et al.  Nature meets nurture: molecular genetics of gastric cancer , 2009, Human Genetics.

[9]  Paolo Bechi,et al.  Genomic and genetic alterations influence the progression of gastric cancer. , 2011, World journal of gastroenterology.

[10]  Magali Olivier,et al.  TP53 mutations in human cancers: origins, consequences, and clinical use. , 2010, Cold Spring Harbor perspectives in biology.

[11]  W F Bodmer,et al.  The ABC of APC. , 2001, Human molecular genetics.

[12]  E. E. Gresch Genetic Alterations During Colorectal-Tumor Development , 1989 .

[13]  G. Tamura Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer. , 2006, World journal of gastroenterology.

[14]  M. Olivier,et al.  TP53 mutations as biomarkers for cancer epidemiology in Latin America: current knowledge and perspectives. , 2005, Mutation research.

[15]  B. Yoo,et al.  Mutation spectrum of the APC gene in 83 Korean FAP families , 2005, Human mutation.

[16]  M. Bertagnolli,et al.  Molecular origins of cancer: Molecular basis of colorectal cancer. , 2009, The New England journal of medicine.

[17]  Hong-Zin Lee,et al.  Association Analysis of Wnt Pathway Genes on Prostate-Specific Antigen Recurrence After Radical Prostatectomy , 2009, Annals of Surgical Oncology.

[18]  Suk Woo Nam,et al.  BRAF and KRAS mutations in stomach cancer , 2003, Oncogene.

[19]  E. Tahara Genetic pathways of two types of gastric cancer. , 2004, IARC scientific publications.

[20]  Sorin V. Sabau,et al.  A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth , 2009, BMC Cancer.

[21]  A. Jemal,et al.  Global Cancer Statistics , 2011 .

[22]  S. Kawauchi,et al.  Genomic instability and DNA ploidy are linked to DNA copy number aberrations of 8p23 and 22q11.23 in gastric cancers. , 2010, International journal of molecular medicine.

[23]  Min-Cheol Lee,et al.  Inverse relationship between APC gene mutation in gastric adenomas and development of adenocarcinoma. , 2002, The American journal of pathology.

[24]  E. El-Omar,et al.  Cellular and molecular aspects of gastric cancer. , 2006, World journal of gastroenterology.

[25]  F. Coulet,et al.  Prevalence of mutations in APC, CTNNB1, and BRAF in Tunisian patients with sporadic colorectal cancer. , 2008, Cancer genetics and cytogenetics.

[26]  K. Loeb,et al.  Multiple mutations and cancer , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  E. Giovannucci,et al.  Primary prevention of colorectal cancer. , 2010, Gastroenterology.

[28]  A. Lindblom,et al.  Definition of candidate low risk APC alleles in a Swedish population , 2004, International journal of cancer.

[29]  R. Wolff,et al.  APC Mutations and Other Genetic and Epigenetic Changes in Colon Cancer , 2007, Molecular Cancer Research.

[30]  G Smith,et al.  The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma , 2005, Gut.

[31]  K. Sabapathy,et al.  Characterization of Novel and Uncharacterized p53 SNPs in the Chinese Population – Intron 2 SNP Co-Segregates with the Common Codon 72 Polymorphism , 2011, PloS one.

[32]  J. Coxhead,et al.  Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Deepa T. Patil,et al.  KRAS Testing and Its Importance in Colorectal Cancer , 2010, Current oncology reports.

[34]  Jiří Drábek,et al.  Clinical Relevance of KRAS in Human Cancers , 2010, Journal of biomedicine & biotechnology.

[35]  R. Hayes,et al.  Polymorphisms in the adenomatous polyposis coli (APC) gene and advanced colorectal adenoma risk. , 2010, European journal of cancer.

[36]  Masahiko Watanabe,et al.  Genomic and epigenetic profiles of gastric cancer: Potential diagnostic and therapeutic applications , 2010, Surgery Today.

[37]  Colin C Pritchard,et al.  Colorectal cancer molecular biology moves into clinical practice , 2010, Gut.

[38]  R. Mariani-Costantini,et al.  Gastric adenomas: relationship between clinicopathological findings, Helicobacter pylori infection, APC mutations and COX-2 expression. , 2006, Annals of oncology : official journal of the European Society for Medical Oncology.

[39]  Y. Yonekawa,et al.  APC mutations in sporadic medulloblastomas. , 2000, The American journal of pathology.

[40]  Hanna Vauhkonen,et al.  Pathology and molecular biology of gastric cancer. , 2006, Best practice & research. Clinical gastroenterology.

[41]  S Ichii,et al.  The APC gene, responsible for familial adenomatous polyposis, is mutated in human gastric cancer. , 1992, Cancer research.

[42]  Joon-Oh Park,et al.  High-Throughput Mutation Profiling Identifies Frequent Somatic Mutations in Advanced Gastric Adenocarcinoma , 2012, PloS one.

[43]  A. Panani Cytogenetic and molecular aspects of gastric cancer: clinical implications. , 2008, Cancer letters.

[44]  G. Bedoya,et al.  [Microsatellite instability among patients with colorectal cancer]. , 2006, Revista medica de Chile.

[45]  B. Leggett,et al.  Colorectal cancer: molecular features and clinical opportunities. , 2010, The Clinical biochemist. Reviews.

[46]  A. Sav,et al.  Clinical significance of p53, K-ras and DCC gene alterations in the stage I-II colorectal cancers. , 2007, Journal of gastrointestinal and liver diseases : JGLD.

[47]  A. Norman,et al.  Kirsten ras mutations in patients with colorectal cancer: the multicenter "RASCAL" study. , 1998, Journal of the National Cancer Institute.

[48]  J. Ramírez,et al.  [Detection of chromosome 17 aneuplody and TP53 gene deletion in a broad variety of solid tumors by dual-color fluorescence in situ hybridization (FISH)]. , 2010, Biomedica : revista del Instituto Nacional de Salud.

[49]  G. Rossi,et al.  Adenomatous polyposis coli alteration in digestive endocrine tumours: correlation with nuclear translocation of beta-catenin and chromosomal instability. , 2008, Endocrine-related cancer.

[50]  S Ichii,et al.  Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. , 1992, Human molecular genetics.

[51]  Z. Sedlacek,et al.  Molecular Genetic Analysis of 103 Sporadic Colorectal Tumours in Czech Patients , 2011, PloS one.

[52]  K. Hemminki,et al.  p53 intron 7 polymorphisms in urinary bladder cancer patients and controls. Stockholm Bladder Cancer Group. , 2000, Mutagenesis.

[53]  R. Labianca,et al.  Gastric cancer. , 2009, Critical reviews in oncology/hematology.

[54]  H. Harn,et al.  Single nucleotide polymorphisms of the APC gene and colorectal cancer risk: a case-control study in Taiwan , 2006, BMC Cancer.

[55]  A. Chapelle,et al.  Genetic predisposition to colorectal cancer , 2004, Nature Reviews Cancer.