Bayesian model comparison in cosmology with Population Monte Carlo
暂无分享,去创建一个
O. Cappé | C. Robert | J. Cardoso | K. Benabed | S. Prunet | G. Fort | D. Wraith | M. Kilbinger | S. University | Francois R. Bouchet Institut d'Astrophysique de Paris | Ceremade Universite Paris Dauphine | LTCI-Télécom ParisTech
[1] T. Kitching,et al. On model selection forecasting, Dark Energy and modified gravity , 2007, astro-ph/0703191.
[2] B. M'enard,et al. On the impact of intergalactic dust on cosmology with type Ia supernovae , 2009, 0903.4199.
[3] Edward J. Wollack,et al. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.
[4] R. Trotta. Applications of Bayesian model selection to cosmological parameters , 2005, astro-ph/0504022.
[5] A. Lasenby,et al. WMAP 3-yr primordial power spectrum , 2006, astro-ph/0607404.
[6] D. Lindley. A STATISTICAL PARADOX , 1957 .
[7] R. Trotta. Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.
[8] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[9] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[10] A. Heavens,et al. Bayesian Evidence for a cosmological constant using new high-redshift supernova data , 2007, astro-ph/0701338.
[11] H. Akaike. A new look at the statistical model identification , 1974 .
[12] D. Parkinson,et al. Bayesian model selection analysis of WMAP3 , 2006, astro-ph/0605003.
[13] M. Halpern,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.
[14] Gutti Jogesh Babu,et al. Statistical Challenges in Modern Astronomy IV , 1998 .
[15] O. Cappé,et al. Population Monte Carlo , 2004 .
[16] J. Skilling. Nested sampling for general Bayesian computation , 2006 .
[17] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[18] Jean-Michel Marin,et al. Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..
[19] W. M. Wood-Vasey,et al. Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.
[20] J. Zibin,et al. The cosmic variance of Omega , 2008, 0804.1771.
[21] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[22] G. Efstathiou,et al. Limitations of Bayesian Evidence Applied to Cosmology , 2008, 0802.3185.
[23] Gersende Fort,et al. Estimation of cosmological parameters using adaptive importance sampling , 2009, 0903.0837.
[24] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[25] A Bayesian analysis of the primordial power spectrum , 2005, astro-ph/0511573.
[26] G. Lepage. A new algorithm for adaptive multidimensional integration , 1978 .
[27] D. Parkinson,et al. A Nested Sampling Algorithm for Cosmological Model Selection , 2005, astro-ph/0508461.
[28] P. Peebles. From Precision Cosmology to Accurate Cosmology , 2002, astro-ph/0208037.
[29] J. Cardoso,et al. TEASING: a fast and accurate approximation for the low multipole likelihood of the cosmic microwave background temperature , 2009, 0901.4537.
[30] Jun S. Liu,et al. Blind Deconvolution via Sequential Imputations , 1995 .
[31] R. Trotta,et al. How flat can you get? A model comparison perspective on the curvature of the Universe , 2009, 0901.3354.
[32] H. Peiris,et al. Recovering the inflationary potential and primordial power spectrum with a slow roll prior: methodology and application to WMAP three year data , 2006, astro-ph/0603587.
[33] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[34] C. Robert,et al. Importance sampling methods for Bayesian discrimination between embedded models , 2009, 0910.2325.
[35] Jérôme Martin,et al. Inflation after Wmap3: Confronting the Slow-roll and Exact Power Spectra to Cmb Data , 2006 .
[36] Yannick Mellier,et al. Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.
[37] F. Feroz,et al. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.
[38] L. M. M.-T.. Theory of Probability , 1929, Nature.
[39] W. Michael Conklin,et al. Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.
[40] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[41] C. Robert,et al. Computational methods for Bayesian model choice , 2009, 0907.5123.