Stabilizing monopedal robot running: reduction-by-feedback and compliant hybrid zero dynamics

As an alternative to traditional wheeled and tracked ground vehicles, biologically-inspired legged systems are becoming increasingly common. On a macroscopic level, locomotion on land can be understood through the introduction of archetypical reductive models, capable of capturing the salient characteristics of the task-level behavior, e.g., walking or running. Unfortunately, these reductive models provide no information of the control mechanisms, through which the multiple joints and limbs of the high-degree-of-freedom-plant are coordinated to produce the observed behavior. The coordinated recruitment of the plant into a low-degree-of-freedom target model constitutes the central problem addressed in this dissertation, which aims at offering a mathematically precise feedback control solution to this problem for the particular setting of monopedal robot running. The robotic monopod Thumper, recently constructed in a collaborative effort between the University of Michigan and Carnegie Mellon University, offers a unique platform for exploring advanced feedback control strategies for running on compliant monopedal robots. The control law proposed for Thumper grows out of rigorous nonlinear controller synthesis ideas, and it coordinates the actuated degrees of freedom of the robot so that a lower-dimensional hybrid subsystem, i.e., a reductive model that encodes running, emerges from the closed-loop dynamics. This subsystem effectively governs the behavior of the robot.

[1]  Daniel Koditschek,et al.  Quantifying Dynamic Stability and Maneuverability in Legged Locomotion1 , 2002, Integrative and comparative biology.

[2]  T. McMahon,et al.  Groucho running. , 1987, Journal of applied physiology.

[3]  Reinhard Blickhan,et al.  A movement criterion for running. , 2002, Journal of biomechanics.

[4]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[5]  A.D. Ames,et al.  Stably Extending Two-Dimensional Bipedal Walking to Three Dimensions , 2007, 2007 American Control Conference.

[6]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[7]  H.O. Wang,et al.  Passive dynamic walking with elastic energy , 2008, 2008 SICE Annual Conference.

[8]  Takashi Emura,et al.  Energy-preserving control of a passive one-legged running robot , 2004, Adv. Robotics.

[9]  Marc H. Raibert,et al.  Hopping in legged systems — Modeling and simulation for the two-dimensional one-legged case , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Rodger Kram,et al.  Simultaneous positive and negative external mechanical work in human walking. , 2002, Journal of biomechanics.

[11]  Daniel E. Koditschek,et al.  Approximating the Stance Map of a 2-DOF Monoped Runner , 2000, J. Nonlinear Sci..

[12]  J.W. Grizzle,et al.  Hybrid Invariance in Bipedal Robots with Series Compliant Actuators , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[13]  Jun Nakanishi,et al.  A brachiating robot controller , 2000, IEEE Trans. Robotics Autom..

[14]  J. Grizzle,et al.  A Restricted Poincaré Map for Determining Exponentially Stable Periodic Orbits in Systems with Impulse Effects: Application to Bipedal Robots , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  T. McMahon,et al.  Ballistic walking. , 1980, Journal of biomechanics.

[16]  Martin Buehler,et al.  Design, control, and energetics of an electrically actuated legged robot , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[17]  Richard W. Longman,et al.  Stable one-legged hopping without feedback and with a point foot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[18]  Dennis A. Randolph,et al.  What Price Speed , 2000 .

[19]  S. Shankar Sastry,et al.  On the Geometric Reduction of Controlled Three-Dimensional Bipedal Robotic Walkers , 2007 .

[20]  M H Raibert,et al.  Trotting, pacing and bounding by a quadruped robot. , 1990, Journal of biomechanics.

[21]  Philip Holmes,et al.  Running in Three Dimensions: Analysis of a Point-mass Sprung-leg Model , 2005, Int. J. Robotics Res..

[22]  Daniel E. Koditschek,et al.  Template based control of hexapedal running , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[23]  Dan B. Marghitu,et al.  Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points , 1994, Int. J. Robotics Res..

[24]  Christine Chevallereau,et al.  Asymptotically Stable Running for a Five-Link, Four-Actuator, Planar Bipedal Robot , 2005, Int. J. Robotics Res..

[25]  Arthur D Kuo,et al.  The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. , 2007, Human movement science.

[26]  A. Michel,et al.  Stability theory for hybrid dynamical systems , 1998, IEEE Trans. Autom. Control..

[27]  Philip Holmes,et al.  A Simply Stabilized Running Model , 2005, SIAM Rev..

[28]  Hartmut Geyer,et al.  Swing-leg retraction: a simple control model for stable running , 2003, Journal of Experimental Biology.

[29]  Arthur D Kuo,et al.  Energetics of actively powered locomotion using the simplest walking model. , 2002, Journal of biomechanical engineering.

[30]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[31]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[32]  J. Grizzle,et al.  Stabilizing highly dynamic locomotion in planar bipedal robots with dimension reducing control , 2008 .

[33]  M. Spong,et al.  CONTROLLED SYMMETRIES AND PASSIVE WALKING , 2002 .

[34]  Thomas A. McMahon,et al.  Muscles, Reflexes, and Locomotion , 1984 .

[35]  G. Cavagna,et al.  The sources of external work in level walking and running. , 1976, The Journal of physiology.

[36]  Martin Buehler Dynamic locomotion with one, four and six-legged robots (特集「ロコモーション」) , 2002 .

[37]  A. Ruina,et al.  Efficiency, speed, and scaling of two-dimensional passive-dynamic walking , 2000 .

[38]  Tad McGeer,et al.  Stability and control of two-dimensional biped walking , 1988 .

[39]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[40]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[41]  Daniel E. Koditschek,et al.  Toward the control of a multi-jointed, monoped runner , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[42]  Christophe Samson,et al.  Running with constant energy , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[43]  Joel W. Burdick,et al.  Periodic Motions of a Hopping Robot With Vertical and Forward Motion , 1993, Int. J. Robotics Res..

[44]  Suguru Arimoto Control of mechanical systems , 2009, Scholarpedia.

[45]  P. Seshu,et al.  Single-legged hopping robotics research—A review , 2007, Robotica.

[46]  Jonathan W. Hurst,et al.  The role and implementation of compliance in legged locomotion , 2008 .

[47]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[48]  T. McMahon,et al.  The mechanics of running: how does stiffness couple with speed? , 1990, Journal of biomechanics.

[49]  Claude Samson,et al.  A New Approach to the Control of the Planar One-Legged Hopper , 1998, Int. J. Robotics Res..

[50]  R. M. Alexander,et al.  Walking and running , 1984, The Mathematical Gazette.

[51]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[52]  G. Cavagna,et al.  Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. , 1977, The American journal of physiology.

[53]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[54]  R. Blickhan,et al.  Similarity in multilegged locomotion: Bouncing like a monopode , 1993, Journal of Comparative Physiology A.

[55]  Philip Holmes,et al.  Stability Analysis of Legged Locomotion Models by Symmetry-Factored Return Maps , 2004, Int. J. Robotics Res..

[56]  Philip Holmes,et al.  Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory , 2000, Biological Cybernetics.

[57]  A. Isidori Nonlinear Control Systems , 1985 .

[58]  Marc H. Raibert,et al.  Experiments in Balance With a 2D One-Legged Hopping Machine , 1984 .

[59]  D. H. Mellor,et al.  Real time , 1981 .

[60]  Christine Chevallereau,et al.  Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot , 2009, IEEE Transactions on Robotics.

[61]  Daniel E. Koditschek,et al.  Analysis of a Simplified Hopping Robot , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[62]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[63]  Martin Buehler,et al.  Controlled passive dynamic running experiments with the ARL-monopod II , 2006, IEEE Transactions on Robotics.

[64]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[65]  Garth Zeglin,et al.  The bow leg hopping robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[66]  T. McMahon,et al.  Ballistic walking: an improved model , 1980 .

[67]  Tsutomu Mita,et al.  Development of a biologically inspired hopping robot-"Kenken" , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[68]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.

[69]  Martin Buehler,et al.  Stable control of a simulated one-legged running robot with hip and leg compliance , 1997, IEEE Trans. Robotics Autom..

[70]  G. Cavagna,et al.  Mechanical work and efficiency in level walking and running , 1977, The Journal of physiology.

[71]  Alfred A. Rizzi,et al.  Series compliance for an efficient running gait , 2008, IEEE Robotics & Automation Magazine.

[72]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[73]  A. Kuo A simple model of bipedal walking predicts the preferred speed-step length relationship. , 2001, Journal of biomechanical engineering.

[74]  Takashi Emura,et al.  Symmetric Walking Control: Invariance and Global Stability , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[75]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[76]  Frans C. T. van der Helm,et al.  How to keep from falling forward: elementary swing leg action for passive dynamic walkers , 2005, IEEE Transactions on Robotics.

[77]  Alexander F. Vakakis,et al.  An "Interesting" Strange Attractor in the Dynamics of a Hopping Robot , 1991, Int. J. Robotics Res..

[78]  Daniel E. Koditschek,et al.  Control of forward velocity for a simplified planar hopping robot , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[79]  R. Full,et al.  Mechanical aspects of legged locomotion control. , 2004, Arthropod structure & development.

[80]  Rodolfo Margaria,et al.  Biomechanics and Energetics of Muscular Exercise , 1976 .

[81]  Jessy W. Grizzle,et al.  Asymptotic model matching for nonlinear systems , 1994, IEEE Trans. Autom. Control..

[82]  R. Alexander,et al.  A model of bipedal locomotion on compliant legs. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[83]  R. M. Alexander,et al.  Elastic mechanisms in animal movement , 1988 .

[84]  Christine Chevallereau,et al.  Achieving Bipedal Running with RABBIT: Six Steps Toward Infinity , 2006 .

[85]  Daniel E. Koditschek,et al.  Characterization of monoped equilibrium gaits , 1997, Proceedings of International Conference on Robotics and Automation.

[86]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[87]  Marc H. Raibert,et al.  Running on four legs as though they were one , 1986, IEEE J. Robotics Autom..

[88]  Robert J. Full,et al.  Musculoskeletal Dynamics in Rhythmic Systems: A Comparative Approach to Legged Locomotion , 2000 .

[89]  R. Blickhan,et al.  Locomotion Energetics of the Ghost Crab: II. Mechanics of the Centre of Mass During Walking and Running , 1987 .

[90]  Tad McGeer,et al.  Passive walking with knees , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[91]  Daniel E. Koditschek,et al.  Spring loaded inverted pendulum running: a plant model , 1998 .

[92]  T. McMahon The role of compliance in mammalian running gaits. , 1985, The Journal of experimental biology.

[93]  I. Shimoyama,et al.  Dynamic Walk of a Biped , 1984 .

[94]  R. Full,et al.  The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners , 1999 .

[95]  Joel E. Chestnutt,et al.  Design and Philosophy of the BiMASC, a Highly Dynamic Biped , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[96]  Reinhard Blickhan,et al.  Compliant leg behaviour explains basic dynamics of walking and running , 2006, Proceedings of the Royal Society B: Biological Sciences.

[97]  Evangelos Papadopoulos,et al.  Single Actuator Control Analysis of a Planar 3DOF Hopping Robot , 2005, Robotics: Science and Systems.

[98]  Koushil Sreenath,et al.  MABEL, a new robotic bipedal walker and runner , 2009, 2009 American Control Conference.

[99]  Robert Ringrose,et al.  Self-stabilizing running , 1997, Proceedings of International Conference on Robotics and Automation.

[100]  Daniel E. Koditschek,et al.  A family of robot control strategies for intermittent dynamical environments , 1990 .

[101]  Andy Ruina,et al.  Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions , 2005, Exercise and sport sciences reviews.