Sequential Quadratic Programming

Since its popularization in the late 1970s, Sequential Quadratic Programming (SQP) has arguably become the most successful method for solving nonlinearly constrained optimization problems. As with most optimization methods, SQP is not a single algorithm, but rather a conceptual method from which numerous specific algorithms have evolved. Backed by a solid theoretical and computational foundation, both commercial and public-domain SQP algorithms have been developed and used to solve a remarkably large set of important practical problems. Recently large-scale versions have been devised and tested with promising results.

[1]  J. Scheffer Note on the Computation of π , 1880 .

[2]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[3]  John E. Dennis,et al.  On the Local and Superlinear Convergence of Quasi-Newton Methods , 1973 .

[4]  R. Tapia Newton’s Method for Optimization Problems with Equality Constraints , 1974 .

[5]  Stephen M. Robinson,et al.  Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms , 1974, Math. Program..

[6]  Philip Wolfe,et al.  Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974, Math. Program..

[7]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[8]  P. Wolfe,et al.  A METHOD OF CONJUGATE SUBGRADIENTS FOR , 1975 .

[9]  R. Tapia A stable approach to Newton's method for general mathematical programming problems inRn , 1975 .

[10]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[11]  Olvi L. Mangasarian,et al.  Superlinearly convergent quasi-newton algorithms for nonlinearly constrained optimization problems , 1976, Math. Program..

[12]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[13]  R. Tapia Diagonalized multiplier methods and quasi-Newton methods for constrained optimization , 1977 .

[14]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[15]  M. J. D. Powell,et al.  Algorithms for nonlinear constraints that use lagrangian functions , 1978, Math. Program..

[16]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .

[17]  R. A. Tapia,et al.  QUASI-NEWTON METHODS FOR EQUALITY CONSTRAINED OPTIMIZATION: EQUIVALENCE OF EXISTING METHODS AND A NEW IMPLEMENTATION , 1978 .

[18]  S. Glad Properties of updating methods for the multipliers in augmented Lagrangians , 1979 .

[19]  P. Boggs,et al.  Augmented Lagrangians which are quadratic in the multiplier , 1980 .

[20]  David M. author-Gay Computing Optimal Locally Constrained Steps , 1981 .

[21]  Philip E. Gill,et al.  Practical optimization , 1981 .

[22]  K. Schittkowski On the Convergence of a Sequential Quadratic Programming Method with an Augmented Lagrangian Line Search Functions. , 1982 .

[23]  P. Boggs,et al.  On the Local Convergence of Quasi-Newton Methods for Constrained Optimization , 1982 .

[24]  Rae Baxter,et al.  Acknowledgments.-The authors would like to , 1982 .

[25]  D. Gabay Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization , 1982 .

[26]  K. Schittkowski The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function , 1982 .

[27]  C. Lemaréchal,et al.  The watchdog technique for forcing convergence in algorithms for constrained optimization , 1982 .

[28]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[29]  M. J. D. Powell,et al.  Variable Metric Methods for Constrained Optimization , 1982, ISMP.

[30]  K. Schittkowski The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function , 1982 .

[31]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[32]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[33]  Renpu Ge,et al.  The convergence of variable metric matrices in unconstrained optimization , 1983, Math. Program..

[34]  Michael A. Saunders,et al.  User''s guide for NPSOL (Ver-sion 4.0): A FORTRAN package for nonlinear programming , 1984 .

[35]  P. Boggs,et al.  A family of descent functions for constrained optimization , 1984 .

[36]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[37]  Danny C. Sorensen,et al.  A note on the computation of an orthonormal basis for the null space of a matrix , 1982, Math. Program..

[38]  Richard A. Tapia,et al.  A trust region strategy for nonlinear equality constrained op-timization , 1984 .

[39]  T. Coleman,et al.  On the Local Convergence of a Quasi-Newton Method for the Nonlinear Programming Problem , 1984 .

[40]  J. Stoer The convergence of matrices generated by rank-2 methods from the restricted β-class of Broyden , 1984 .

[41]  A. Vardi A Trust Region Algorithm for Equality Constrained Minimization: Convergence Properties and Implementation , 1985 .

[42]  Michael A. Saunders,et al.  Properties of a representation of a basis for the null space , 1985, Math. Program..

[43]  Ya-Xiang Yuan,et al.  An only 2-step Q-superlinear convergence example for some algorithms that use reduced hessian approximations , 1985, Math. Program..

[44]  Jonathan Goodman,et al.  Newton's method for constrained optimization , 1985, Math. Program..

[45]  Anthony V. Fiacco,et al.  Mathematical programming study 21 , 1985, Mathematical programming.

[46]  Richard H. Byrd,et al.  A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .

[47]  Richard H. Byrd,et al.  Continuity of the null space basis and constrained optimization , 1986, Math. Program..

[48]  Ya-Xiang Yuan,et al.  A recursive quadratic programming algorithm that uses differentiable exact penalty functions , 1986, Math. Program..

[49]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .

[50]  Masao Fukushima,et al.  A successive quadratic programming algorithm with global and superlinear convergence properties , 1986, Math. Program..

[51]  T. Steihaug,et al.  A Convergence Theory for a Class of Quasi-Newton Methods for Constrained Optimization , 1987 .

[52]  S. Nash,et al.  Linear and Nonlinear Programming , 1987 .

[53]  R. Fletcher Practical Methods of Optimization , 1988 .

[54]  T. Coleman On Characterizations of Superlinear Convergence for Constrained Optimization , 1988 .

[55]  R. Tapia On secant updates for use in general constrained optimization , 1988 .

[56]  R. Fontecilla Local convergence of secant methods for nonlinear constrained optimization , 1988 .

[57]  P. Boggs,et al.  A strategy for global convergence in a sequential quadratic programming algorithm , 1989 .

[58]  V. F. Demʹi︠a︡nov,et al.  Nonsmooth optimization and related topics , 1989 .

[59]  E. Polak Basics of Minimax Algorithms , 1989 .

[60]  E. Omojokun Trust region algorithms for optimization with nonlinear equality and inequality constraints , 1990 .

[61]  Ya-Xiang Yuan,et al.  On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..

[62]  M. El-Alem A global convergence theory for the Celis-Dennis-Tapia trust-region algorithm for constrained optimization , 1991 .

[63]  P T Boggs,et al.  A merit function for inequality constrained nonlinear programming problems , 1991 .

[64]  Ya-Xiang Yuan,et al.  A trust region algorithm for equality constrained optimization , 1990, Math. Program..

[65]  Jorge Nocedal,et al.  An analysis of reduced Hessian methods for constrained optimization , 1991, Math. Program..

[66]  Paul T. Boggs,et al.  An interior-point method for linear and quadratic programming problems , 1991 .

[67]  Jorge Nocedal,et al.  Theory of algorithms for unconstrained optimization , 1992, Acta Numerica.

[68]  Thomas F. Coleman,et al.  Partitioned quasi-Newton methods for nonlinear equality constrained optimization , 1992, Math. Program..

[69]  J. F. Bonnans,et al.  Avoiding the Maratos effect by means of a nonmonotone line search II. Inequality constrained problems—feasible iterates , 1992 .

[70]  Yin Zhang,et al.  An SQP Augmented Lagrangian BFGS Algorithm for Constrained Optimization , 1992, SIAM J. Optim..

[71]  Jean Charles Gilbert Superlinear convergence of a reduced BFGS method with piecewise line-search and update criterion , 1993 .

[72]  Robert J. Vanderbei,et al.  Symmetric indefinite systems for interior point methods , 1993, Math. Program..

[73]  André L. Tits,et al.  On combining feasibility, descent and superlinear convergence in inequality constrained optimization , 1993, Math. Program..

[74]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[75]  Katta G. Murty,et al.  Mathematical programming: State of the art 1994 , 1994 .

[76]  Paul T. Boggs,et al.  Convergence Properties of a Class of Rank-two Updates , 1994, SIAM J. Optim..

[77]  Francisco J. Prieto,et al.  A Sequential Quadratic Programming Algorithm Using an Incomplete Solution of the Subproblem , 1995, SIAM J. Optim..

[78]  Mahmoud El-Alem,et al.  A Robust Trust-Region Algorithm with a Nonmonotonic Penalty Parameter Scheme for Constrained Optimization , 1995, SIAM J. Optim..

[79]  Paul D. Domich,et al.  An interior point method for general large-scale quadratic programming problems , 1996, Ann. Oper. Res..