Supersymmetry and Schrodinger-type operators with distributional matrix-valued potentials

Building on work on Miura's transformation by Kappeler, Perry, Shubin, and Topalov, we develop a detailed spectral theoretic treatment of Schrodinger operators with matrix-valued potentials, with special emphasis on distributional potential coecients. Our principal method relies on a supersymmetric (factorization) formalism underlying Miura's transformation, which intimately connects the triple of operators (D;H1;H2) of the form D = 0 A A 0 in L 2 (R) 2m and H1 = A A; H2 = AA in L 2 (R) m : Here A = Im(d=dx) + in L2(R)m, with a matrix-valued coecient = 2 L1 (R) m m, m2 N, thus explicitly permitting distributional potential coecients Vj in Hj, j = 1; 2, where Hj = Im d 2 dx2 +Vj(x); Vj(x) = (x) 2 + ( 1) j 0 (x); j = 1; 2: Upon developing Weyl{Titchmarsh theory for these generalized Schrodinger operators Hj, with (possibly, distributional) matrix-valued potentials Vj, we provide some spectral theoretic applications, including a derivation of the cor- responding spectral representations for Hj, j = 1; 2. Finally, we derive a local Borg{Marchenko uniqueness theorem for Hj, j = 1; 2, by employing the underlying supersymmetric structure and reducing it to the known local Borg{Marchenko uniqueness theorem for D.

[1]  Gerald Teschl,et al.  Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators, Second Edition , 2014 .

[2]  V. Mikhailets,et al.  SINGULAR EIGENVALUE PROBLEMS ON THE CIRCLE , 2014, 1403.2643.

[3]  V. Mikhailets,et al.  UNIFORM ESTIMATES FOR THE SEMI-PERIODIC EIGENVALUES OF THE SINGULAR DIFFERENTIAL OPERATORS , 2014, 1403.2655.

[4]  S. Grudsky,et al.  On positive type initial profiles for the KdV equation , 2014 .

[5]  L. Sakhnovich,et al.  Inverse Problems and Nonlinear Evolution Equations: Solutions, Darboux Matrices and Weyl-Titchmarsh Functions , 2013 .

[6]  V. Mikhailets,et al.  Remarks on Schr\"odinger operators with singular matrix potentials , 2013, 1306.0439.

[7]  F. Gesztesy,et al.  Some Remarks on the Spectral Problem Underlying the Camassa-Holm Hierarchy , 2013, 1303.5793.

[8]  F. Gesztesy,et al.  On Spectral Theory for Schr\"odinger Operators with Operator-Valued Potentials , 2013, 1301.0682.

[9]  Gerald Teschl,et al.  Inverse spectral theory for Sturm–Liouville operators with distributional potentials , 2012, J. Lond. Math. Soc..

[10]  G. Teschl,et al.  Uniqueness for inverse Sturm–Liouville problems with a finite number of transmission conditions☆ , 2012, 1203.6608.

[11]  H. Koch,et al.  The Korteweg-de-Vries equation at H^{-1} regularity , 2011, 1112.4657.

[12]  E. Davies Singular Schrodinger operators in one dimension , 2011, 1112.4041.

[13]  K. A. Mirzoev,et al.  Singular Sturm-Liouville operators with distribution potential on spaces of vector functions , 2011 .

[14]  R. Hryniv,et al.  Self-adjointness of Schroedinger operators with singular potentials , 2011, 1111.0809.

[15]  H. Langer,et al.  Mark Krein's method of directing functionals and singular potentials , 2011, 1110.6709.

[16]  Evgeny L. Korotyaev,et al.  Sharp asymptotics of the quasimomentum , 2011, Asymptot. Anal..

[17]  G. Teschl,et al.  Uniqueness results for one-dimensional Schrödinger operators with purely discrete spectra , 2011, 1110.2453.

[18]  R. Hryniv,et al.  Inverse Scattering for Schrödinger Operators with Miura Potentials, II. Different Riccati Representatives , 2011 .

[19]  S. Grudsky,et al.  Singular Miura type initial profiles for the KdV equation , 2011, 1108.2314.

[20]  B. Mityagin,et al.  Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators , 2011, 1106.5774.

[21]  Jonathan Eckhardt Inverse Uniqueness Results for Schrödinger Operators Using de Branges Theory , 2011, 1105.6355.

[22]  G. Teschl,et al.  Sturm-Liouville operators with measure-valued coefficients , 2011, 1105.3755.

[23]  P. Kurasov,et al.  An Operator Theoretic Interpretation of the Generalized Titchmarsh-Weyl Coefficient for a Singular Sturm-Liouville Problem , 2011 .

[24]  R. Hryniv Analyticity and uniform stability in the inverse singular Sturm–Liouville spectral problem , 2011, 1101.5426.

[25]  Masashi Kato Estimates of the Eigenvalues of Hill's Operator with Distributional Coefficients , 2010 .

[26]  A.M.Savchuk,et al.  Inverse problems for Sturm--Liouville operators with potentials from Sobolev spaces. Uniform stability , 2010, 1010.5916.

[27]  G. Teschl,et al.  Commutation methods for Schrödinger operators with strongly singular potentials , 2010, 1010.4902.

[28]  S. Albeverio,et al.  Spectral theory of semibounded Sturm–Liouville operators with local interactions on a discrete set , 2010 .

[29]  A. Kostenko,et al.  1-D Schrödinger operators with local point interactions on a discrete set , 2010 .

[30]  A. Kostenko,et al.  One-dimensional Schrödinger operator with δ-interactions , 2010 .

[31]  H. Langer,et al.  Sturm-Liouville Operators with Singularities and Generalized Nevanlinna Functions , 2010 .

[32]  G. Teschl,et al.  Inverse eigenvalue problems for perturbed spherical Schrödinger operators , 2010, 1004.4175.

[33]  A. Goriunov,et al.  Regularization of singular Sturm-Liouville equations , 2010, 1002.4371.

[34]  R. Hryniv,et al.  Sobolev mapping properties of the scattering transform for the Schr , 2010, 1002.0540.

[35]  Stephen Clark,et al.  WEYL-TITCHMARSH THEORY AND BORG-MARCHENKO-TYPE UNIQUENESS RESULTS FOR CMV OPERATORS WITH MATRIX-VALUED , 2010, 1002.0387.

[36]  A. Goriunov,et al.  Resolvent convergence of Sturm—Liouville operators with singular potentials , 2010, 1001.4160.

[37]  R. Hryniv,et al.  Inverse scattering for Schrödinger operators with Miura potentials: I. Unique Riccati representatives and ZS-AKNS systems , 2009, 0910.0636.

[38]  Y. Mykytyuk,et al.  Inverse spectral problems for Sturm–Liouville operators with matrix-valued potentials , 2009, 0907.5217.

[39]  A. Shkalikov,et al.  Oscillation theorems for Sturm-Liouville problems with distribution potentials , 2009 .

[40]  B. Mityagin,et al.  Spectral gaps of Schr\"odinger operators with periodic singular potentials , 2009, 0903.5210.

[41]  B. Mityagin,et al.  Spectral gap asymptotics of one-dimensional Schrödinger operators with singular periodic potentials , 2008 .

[42]  Charles T. Fulton,et al.  Titchmarsh–Weyl m ‐functions for second‐order Sturm–Liouville problems with two singular endpoints , 2008 .

[43]  V. Mikhailets,et al.  One-dimensional Schr\"odinger operators with singular periodic potentials , 2008, 0805.1000.

[44]  A. Shkalikov,et al.  On the properties of maps connected with inverse Sturm-Liouville problems , 2008 .

[45]  R. Hryniv,et al.  On spectra of non-self-adjoint Sturm–Liouville operators , 2008 .

[46]  Stephen Clark,et al.  Borg-Marchenko-type Uniqueness Results for CMV Operators , 2008, 0803.3175.

[47]  B. Mityagin,et al.  Fourier method for one dimensional Schrödinger operators with singular periodic potentials , 2007, 0710.0237.

[48]  V. Mikhailets,et al.  Singularly perturbed periodic and semiperiodic differential operators , 2007, 0705.3045.

[49]  T. Kappeler,et al.  Global wellposedness of KdV in $H^{-1}({\mathbb T},{\mathbb R})$ , 2006 .

[50]  A. Shkalikov,et al.  On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev spaces , 2006, math/0609213.

[51]  R. Hryniv,et al.  Eigenvalue asymptotics for Sturm–Liouville operators with singular potentials , 2006 .

[52]  A. Sakhnovich Skew-self-adjoint discrete and continuous Dirac-type systems: inverse problems and Borg–Marchenko theorems , 2005, math/0511594.

[53]  M. Shubin,et al.  The Miura map on the line , 2005, math/0506411.

[54]  C. Remling,et al.  Direct and Inverse Spectral Theory of One-dimensional Schrödinger Operators with Measures , 2005 .

[55]  F. Gesztesy,et al.  On spectral theory for Schrödinger operators with strongly singular potentials , 2005, math/0505120.

[56]  V. Maz'ya,et al.  Form boundedness of the general second‐order differential Operator , 2004, math/0411216.

[57]  R. Hryniv,et al.  INVERSE SPECTRAL PROBLEMS FOR STURM–LIOUVILLE OPERATORS WITH SINGULAR POTENTIALS. IV. POTENTIALS IN THE SOBOLEV SPACE SCALE , 2004, Proceedings of the Edinburgh Mathematical Society.

[58]  V. Maz'ya,et al.  Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator , 2004, math/0406050.

[59]  R. Hryniv,et al.  Transformation Operators for Sturm-Liouville Operators with Singular Potentials , 2004, math/0407252.

[60]  Matthias Lesch,et al.  On the deficiency indices and self-adjointness of symmetric Hamiltonian systems , 2003 .

[61]  A. Shkalikov,et al.  Sturm-Liouville operators with distributional potentials , 2003, math/0301077.

[62]  R. Hryniv,et al.  Inverse spectral problems for Sturm–Liouville operators with singular potentials , 2002, math/0211247.

[63]  Igor E. Verbitsky,et al.  The Schrödinger operator on the energy space: boundedness and compactness criteria , 2002 .

[64]  A. Shkalikov,et al.  Multipliers in Dual Sobolev Spaces and Schrödinger Operators with Distribution Potentials , 2002 .

[65]  Alexander Sakhnovich,et al.  Dirac type and canonical systems: spectral and Weyl–Titchmarsh matrix functions, direct and inverse problems , 2002 .

[66]  F. Gesztesy,et al.  On Povzner–Wienholtz-type self-adjointness results for matrix-valued Sturm–Liouville operators , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[67]  A. Kufner,et al.  Boundedness and compactness criteria for the one-dimensional Schrödinger operator , 2002 .

[68]  T. Kappeler,et al.  Estimates for Periodic and Dirichlet Eigenvalues of the Schrödinger Operator with Singular Potentials , 2001 .

[69]  R. Hryniv,et al.  Schrödinger operators with singular Gordon potentials , 2001, math/0109130.

[70]  R. Hryniv,et al.  Schr\"odinger Operators with Periodic Singular Potentials , 2001, math/0109129.

[71]  A. Shkalikov,et al.  Trace Formula for Sturm--Liouville Operators with Singular Potentials , 2001 .

[72]  F. Gesztesy,et al.  Weyl-Titchmarsh M-Function Asymptotics, Local Uniqueness Results, Trace Formulas, and Borg-type Theorems for Dirac Operators , 2001, math/0102040.

[73]  R. Mennicken,et al.  On the Spectrum of the Product of Closed Operators , 2000 .

[74]  F. Gesztesy,et al.  Uniqueness Results for Matrix-Valued Schrodinger, Jacobi, and Dirac-Type Operators , 2000 .

[75]  Sergio Albeverio,et al.  Singular perturbations of differential operators : solvable Schrödinger type operators , 2000 .

[76]  A. Shkalikov,et al.  Sturm-liouville operators with singular potentials , 1999 .

[77]  B. Simon,et al.  On Local Borg–Marchenko Uniqueness Results , 1999, math/9910089.

[78]  Lawrence Markus,et al.  Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-differential Operators , 1998 .

[79]  M. Malamud,et al.  The Inverse Spectral Problem for First Order Systems on the Half Line , 1998, math/9805033.

[80]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[81]  F. Gesztesy,et al.  One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics , 1997, Differential and Integral Equations.

[82]  B. Simon,et al.  Spectral deformations of one-dimensional Schrödinger operators , 1996 .

[83]  Bernd Thaller,et al.  The Dirac Equation , 1992 .

[84]  B. Simon,et al.  Commutation methods applied to the mKdV-equation , 1991 .

[85]  H. Holden,et al.  Solvable models in quantum mechanics , 1990 .

[86]  B. Simon,et al.  Constructing Solutions of the mKdV-Equation , 1990 .

[87]  J. Weiddman,et al.  SPECTRAL THEORY AND DIFFERENTIAL OPERATORS (Oxford Mathematical Monographs) , 1989 .

[88]  B. Simon,et al.  Stochastic Schrödinger operators and Jacobi matrices on the strip , 1988 .

[89]  D. E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987 .

[90]  Barry Simon,et al.  Witten index, axial anomaly, and Krein's spectral shift function in supersymmetric quantum mechanics , 1987 .

[91]  J. Weidmann,et al.  Spectral Theory of Ordinary Differential Operators , 1987 .

[92]  O. Hald Discontinuous inverse eigenvalue problems , 1984 .

[93]  J. K. Shaw,et al.  On Boundary Value Problems for Hamiltonian Systems with Two Singular Points , 1984 .

[94]  J. K. Shaw,et al.  Hamiltonian systems of limit point or limit circle type with both endpoints singular , 1983 .

[95]  J. K. Shaw,et al.  On Titchmarsh-Weyl M(λ)-functions for linear Hamiltonian systems , 1981 .

[96]  M. Combescure Spectral and scattering theory for a class of strongly oscillating potentials , 1980 .

[97]  P. Deift Applications of a commutation formula , 1978 .

[98]  K. Chadan,et al.  The inverse scattering problem for singular oscillating potentials , 1975 .

[99]  A. Zettl Formally self-adjoint quasi-differential operators , 1975 .

[100]  B. Simon Essential self-adjointness of Schrödinger operators with singular potentials , 1973 .

[101]  I. Kac A REMARK ON THE ARTICLE, “THE EXISTENCE OF SPECTRAL FUNCTIONS OF GENERALIZED SECOND ORDER DIFFERENTIAL SYSTEMS WITH BOUNDARY CONDITIONS AT THE SINGULAR END” , 1968 .

[102]  N. Aronszajn,et al.  On exponential representations of analytic functions in the upper half-plane with positive imaginary part , 1956 .

[103]  K. Kodaira ( 18 ) The eigenvalue problem for ordinary differential equations of the second order and Heisenberg's theory of S-matrices , 1949 .

[104]  Spectral Asymptotics for Perturbed Spherical Schrodinger Operators and Applications to Quantum Scattering , 2012 .

[105]  A. Rybkin Regularized Perturbation Determinants and KdV Conservation Laws for Irregular Initial Profiles , 2010 .

[106]  T. Kappeler,et al.  Global fold structure of the Miura map on L2(T) , 2004 .

[107]  R. Hryniv,et al.  Half-inverse spectral problems for Sturm–Liouville operators with singular potentials , 2004 .

[108]  E. Korotyaev Characterization of the spectrum of Schrödinger operators with periodic distributions , 2003 .

[109]  Андрей Андреевич Шкаликов,et al.  Формула следа для операторов Штурма - Лиувилля с сингулярными потенциалами@@@Trace Formula for Sturm - Liouville Operators with Singular Potentials , 2001 .

[110]  Mark Malamud,et al.  Institute for Mathematical Physics the Inverse Spectral Problem for First Order Systems on the Half Line the Inverse Spectral Problem for Rst Order Systems on the Half Line , 1998 .

[111]  Albert Schneider,et al.  On the Titchmarsh‐Weyl Coefficients for Singular S‐Hermitian Systems II , 1993 .

[112]  B. Thaller Normal forms of an abstract Dirac operator and applications to scattering theory , 1988 .

[113]  W. N. Everitt,et al.  On second-order left-definite boundary value problems , 1982 .

[114]  J. K. Shaw,et al.  ON THE SPECTRUM OF A SINGULAR HAMILTONIAN SYSTEM , 1982 .

[115]  D. Pearson SCATTERING THEORY FOR A CLASS OF OSCILLATING POTENTIALS , 1979 .

[116]  J. Ginibre,et al.  Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials , 1976 .

[117]  R. Carey A unitary invariant for pairs of self-adjoint operators. , 1976 .

[118]  K. Chadan,et al.  Scattering theory with highly singular oscil-lating potentials , 1976 .

[119]  E. Coddington,et al.  Spectral theory of ordinary differential operators , 1975 .

[120]  P. Goldbart,et al.  Linear differential operators , 1967 .

[121]  Tosio Kato Perturbation theory for linear operators , 1966 .

[122]  G. Teschl,et al.  Institute for Mathematical Physics Weyl–titchmarsh Theory for Schrödinger Operators with Strongly Singular Potentials Weyl–titchmarsh Theory for Schr¨odinger Operators with Strongly Singular Potentials , 2022 .