Projective synchronization of Chua's chaotic systems with dead-zone in the control input

This paper investigates the chaos synchronization problem for drive-response Chua's systems coupled with dead-zone nonlinear input. Using the sliding mode control technique, an adaptive control law is established which guarantees projective synchronization even when the dead-zone nonlinearity is present. Computer simulations are provided to demonstrate the effectiveness of the proposed synchronization scheme.

[1]  Gang Feng,et al.  An adaptive lag-synchronization method for time-delay chaotic systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[2]  Carroll,et al.  Transforming signals with chaotic synchronization. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[4]  L. Chua,et al.  Generalized synchronization of chaos via linear transformations , 1999 .

[5]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[6]  Leon O. Chua,et al.  Impulsive Control and Synchronization of Chaos , 1999 .

[7]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .

[8]  Jianping Yan,et al.  Generalized projective synchronization of a unified chaotic system , 2005 .

[9]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[10]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[11]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[12]  K. Hsu Adaptive Variable Structure Control Design for Uncertain Time-Delayed Systems with Nonlinear Input , 1998 .

[13]  Daolin Xu,et al.  A secure communication scheme using projective chaos synchronization , 2004 .

[14]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[15]  Teh-Lu Liao,et al.  Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .

[16]  E. Solak,et al.  On the Synchronization of Chaos Systems by Using State Observers , 1997 .

[17]  Tao Yang Control of Chaos Using Sampled-Data Feedback Control , 1998 .

[18]  Morgül,et al.  Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  T. Liao Observer-based approach for controlling chaotic systems , 1998 .

[20]  F. M. Moukam Kakmeni,et al.  Chaos synchronization and duration time of a class of uncertain chaotic systems , 2006, Math. Comput. Simul..

[21]  Daolin Xu,et al.  Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension , 2002 .

[22]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[23]  Guohui Li,et al.  Projective synchronization of chaotic system using backstepping control , 2006 .

[24]  Jitao Sun,et al.  Impulsive control and synchronization of Chua's oscillators , 2004, Math. Comput. Simul..