Comparative Analysis of Rhizosphere Microbiomes of Southern Highbush Blueberry (Vaccinium corymbosum L.), Darrowâs Blueberry (V. darrowii Camp), and Rabbiteye Blueberry (V. virgatum Aiton)

[1]  H. Mcculloch,et al.  THE NEW CELL PROLIFERANT , 1912 .

[2]  F. Dini-Andreote,et al.  Ecology and Evolution of Plant Microbiomes. , 2019, Annual review of microbiology.

[3]  Z. Cui,et al.  Succession of Composition and Function of Soil Bacterial Communities During Key Rice Growth Stages , 2019, Front. Microbiol..

[4]  Wolfgang Wanek,et al.  Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli , 2019, Front. Plant Sci..

[5]  G. Kowalchuk,et al.  Protists: Puppet Masters of the Rhizosphere Microbiome. , 2019, Trends in plant science.

[6]  Bruno Studer,et al.  Insights to plant-microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. , 2018, Plant, cell & environment.

[7]  C. Jung,et al.  Rhizosphere Microbial Communities of Spartina alterniflora and Juncus roemerianus From Restored and Natural Tidal Marshes on Deer Island, Mississippi , 2018, Frontiers in Microbiology.

[8]  S. Barker,et al.  Structural plasticity in root-fungal symbioses: diverse interactions lead to improved plant fitness , 2018, PeerJ.

[9]  M. Häggblom,et al.  Rhizosphere Microbial Response to Multiple Metal(loid)s in Different Contaminated Arable Soils Indicates Crop-Specific Metal-Microbe Interactions , 2018, Applied and Environmental Microbiology.

[10]  Mattias de Hollander,et al.  The wild side of plant microbiomes , 2018, Microbiome.

[11]  G. Douglas,et al.  Dissecting Community Structure in Wild Blueberry Root and Soil Microbiome , 2018, Front. Microbiol..

[12]  G. Beattie Metabolic coupling on roots , 2018, Nature Microbiology.

[13]  Eoin L. Brodie,et al.  Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly , 2018, Nature Microbiology.

[14]  D. Guttman,et al.  Assembly and ecological function of the root microbiome across angiosperm plant species , 2018, Proceedings of the National Academy of Sciences.

[15]  T. Northen,et al.  Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? , 2018, Trends in plant science.

[16]  David C. Percival,et al.  Variation in Bacterial and Eukaryotic Communities Associated with Natural and Managed Wild Blueberry Habitats , 2017 .

[17]  A. Jousset,et al.  Plant Breeding Goes Microbial. , 2017, Trends in plant science.

[18]  M. Bosse,et al.  Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits , 2017, The ISME Journal.

[19]  Chuntao Yin,et al.  Community Structure, Species Variation, and Potential Functions of Rhizosphere-Associated Bacteria of Different Winter Wheat (Triticum aestivum) Cultivars , 2017, Front. Plant Sci..

[20]  M. Schloter,et al.  Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development , 2017, FEMS microbiology ecology.

[21]  G. Douglas,et al.  Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research , 2017, mSystems.

[22]  Lutz Krause,et al.  Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions , 2016, Bioinform..

[23]  Niklaus J. Grünwald,et al.  Metacoder: An R package for visualization and manipulation of community taxonomic diversity data , 2016, bioRxiv.

[24]  Devin R. Leopold Ericoid fungal diversity: Challenges and opportunities for mycorrhizal research , 2016 .

[25]  S. Khalil,et al.  Blueberry—Soil interactions from an organic perspective , 2016 .

[26]  J. Schwambach,et al.  Chemical Characterization and Cytotoxic Activity of Blueberry Extracts (cv. Misty) Cultivated in Brazil. , 2016, Journal of food science.

[27]  M. V. van Driel,et al.  Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. , 2016, Ecology letters.

[28]  S. Tringe,et al.  Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species , 2015, The New phytologist.

[29]  P. Bakker,et al.  Fungal invasion of the rhizosphere microbiome , 2015, The ISME Journal.

[30]  E. Martino,et al.  ' S PROOF ! Metadata of the article that will be visualized in OnlineFirst 1 Article Title Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis , 2022 .

[31]  P. Schäfer,et al.  Plant root-microbe communication in shaping root microbiomes , 2016, Plant Molecular Biology.

[32]  Kee-Choon Park,et al.  Plant-specific effects of sunn hemp (Crotalaria juncea) and sudex (Sorghum bicolor × Sorghum bicolor var. sudanense) on the abundance and composition of soil microbial community , 2015 .

[33]  Gustavo A. Lobos,et al.  Breeding blueberries for a changing global environment: a review , 2015, Front. Plant Sci..

[34]  Q. Shen,et al.  Manipulating the banana rhizosphere microbiome for biological control of Panama disease , 2015, Scientific Reports.

[35]  Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness , 2015, Biology and Fertility of Soils.

[36]  J. Olmstead,et al.  Rhizosphere Acidification is Not Part of the Strategy I Iron Deficiency Response of Vaccinium arboreum and the Southern Highbush Blueberry , 2015 .

[37]  R. Mendes,et al.  Impact of plant domestication on rhizosphere microbiome assembly and functions , 2015, Plant Molecular Biology.

[38]  Philippe Vandenkoornhuyse,et al.  The importance of the microbiome of the plant holobiont. , 2015, The New phytologist.

[39]  Alice C. McHardy,et al.  Structure and Function of the Bacterial Root Microbiota in Wild and Domesticated Barley , 2015, Cell host & microbe.

[40]  Cameron Johnson,et al.  Structure, variation, and assembly of the root-associated microbiomes of rice , 2015, Proceedings of the National Academy of Sciences.

[41]  M. Grube,et al.  Bacterial networks and co-occurrence relationships in the lettuce root microbiota. , 2015, Environmental microbiology.

[42]  Márton Szoboszlay,et al.  Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars , 2015 .

[43]  G. Berg,et al.  Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops—and modern sugar beets , 2014, Front. Microbiol..

[44]  Bart Lievens,et al.  Comparison and Validation of Some ITS Primer Pairs Useful for Fungal Metabarcoding Studies , 2014, PloS one.

[45]  Pelin Yilmaz,et al.  The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks , 2013, Nucleic Acids Res..

[46]  James R. Cole,et al.  Ribosomal Database Project: data and tools for high throughput rRNA analysis , 2013, Nucleic Acids Res..

[47]  Jiajie Zhang,et al.  PEAR: a fast and accurate Illumina Paired-End reAd mergeR , 2013, Bioinform..

[48]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[49]  S. Tringe,et al.  Diversity and heritability of the maize rhizosphere microbiome under field conditions , 2013, Proceedings of the National Academy of Sciences.

[50]  J. Vivanco,et al.  Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome* , 2013, The Journal of Biological Chemistry.

[51]  R. Amann,et al.  Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota , 2012, Nature.

[52]  A. Schilder,et al.  Root Colonization by Ericoid Mycorrhizae and Dark Septate Endophytes in Organic and Conventional Blueberry Fields in Michigan , 2012 .

[53]  F. Rainey,et al.  Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. , 2011, Systematic and applied microbiology.

[54]  E. Carmack,et al.  Arctic Ocean Microbial Community Structure before and after the 2007 Record Sea Ice Minimum , 2011, PloS one.

[55]  K. Summers,et al.  Evidence for acquisition of virulence effectors in pathogenic chytrids , 2011, BMC Evolutionary Biology.

[56]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[57]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[58]  J. Albrechtová,et al.  The Co-occurrence and Morphological Continuum Between Ericoid Mycorrhiza and Dark Septate Endophytes in Roots of Six European Rhododendron Species , 2011, Folia Geobotanica.

[59]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[60]  Andy F. S. Taylor,et al.  The UNITE database for molecular identification of fungi--recent updates and future perspectives. , 2010, The New phytologist.

[61]  D. Chavez,et al.  Interspecific crosses and backcrosses between diploid Vaccinium darrowii and tetraploid southern highbush blueberry. , 2009 .

[62]  L. Prat,et al.  Blueberries mycorrhizal symbiosis outside of the boundaries of natural dispersion for ericaceous plants in Chile. , 2009 .

[63]  Jos M. Raaijmakers,et al.  The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms , 2009, Plant and Soil.

[64]  W. H. Camp The North American blueberries with notes on other groups of vacciniaceae , 1945, Brittonia.

[65]  E. Kiers,et al.  Human selection and the relaxation of legume defences against ineffective rhizobia , 2007, Proceedings of the Royal Society B: Biological Sciences.

[66]  J. Sørensen,et al.  Plant-associated bacteria - lifestyle and molecular interactions , 2007 .

[67]  J. Hancock Highbush Blueberry Breeders , 2006 .

[68]  Wei Yang,et al.  Cultural Variation and Mycorrhizal Status of Blueberry Plants in NW Oregon Commercial Production Fields , 2005 .

[69]  C. Scagel Inoculation with ericoid mycorrhizal fungi alters fertilizer use of highbush blueberry cultivars , 2005 .

[70]  R. Prior,et al.  Oxygen Radical Absorbing Capacity of Anthocyanins , 1997 .

[71]  D. Read The Structure and Function of the Ericoid Mycorrhizal Root , 1996 .

[72]  C. Rosen,et al.  BLUEBERRY GERMPLASM SCREENING AT SEVERAL SOIL PH REGIMES. I: PLANT SURVIVAL AND GROWTH , 1993 .

[73]  S. Goodison,et al.  16S ribosomal DNA amplification for phylogenetic study , 1991, Journal of bacteriology.

[74]  G. Darrow,et al.  Breeding blueberries for the Florida climate. , 1960 .

[75]  F. Coville Improving the wild blueberry. , 1937 .