Engineering Cell Surface Function with DNA Origami

A specific and reversible method is reported to engineer cell‐membrane function by embedding DNA‐origami nanodevices onto the cell surface. Robust membrane functionalization across epithelial, mesenchymal, and nonadherent immune cells is achieved with DNA nanoplatforms that enable functions including the construction of higher‐order DNA assemblies at the cell surface and programed cell–cell adhesion between homotypic and heterotypic cells via sequence‐specific DNA hybridization. It is anticipated that integration of DNA‐origami nanodevices can transform the cell membrane into an engineered material that can mimic, manipulate, and measure biophysical and biochemical function within the plasma membrane of living cells.

[1]  I. Levental,et al.  The Continuing Mystery of Lipid Rafts. , 2016, Journal of molecular biology.

[2]  H. Dietz,et al.  Uncovering the forces between nucleosomes using DNA origami , 2016, Science Advances.

[3]  Tim Liedl,et al.  Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp , 2016, Science.

[4]  M. Zacharias,et al.  Single-molecule dissection of stacking forces in DNA , 2016, Science.

[5]  Russell M Gordley,et al.  Modular engineering of cellular signaling proteins and networks. , 2016, Current opinion in structural biology.

[6]  Jenny V Le,et al.  Probing Nucleosome Stability with a DNA Origami Nanocaliper. , 2016, ACS nano.

[7]  Carlos E. Castro,et al.  DNA Origami: Folded DNA‐Nanodevices That Can Direct and Interpret Cell Behavior , 2016, Advanced materials.

[8]  W. Chiu,et al.  Designer nanoscale DNA assemblies programmed from the top down , 2016, Science.

[9]  Jing Wang,et al.  A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. , 2016, Journal of the American Chemical Society.

[10]  Jing Wang,et al.  Self-assembly of size-controlled liposomes on DNA nanotemplates , 2016, Nature chemistry.

[11]  Russell M. Gordley,et al.  Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors , 2016, Cell.

[12]  S. Howorka,et al.  A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. , 2016, Nature nanotechnology.

[13]  H. Dietz,et al.  Placing molecules with Bohr radius resolution using DNA origami. , 2016, Nature nanotechnology.

[14]  Patrick D. Halley,et al.  Daunorubicin-Loaded DNA Origami Nanostructures Circumvent Drug-Resistance Mechanisms in a Leukemia Model. , 2016, Small.

[15]  Tejal A Desai,et al.  Programmed synthesis of three-dimensional tissues , 2015, Nature Methods.

[16]  Friedrich C. Simmel,et al.  Membrane-Assisted Growth of DNA Origami Nanostructure Arrays , 2015, ACS nano.

[17]  Petra Schwille,et al.  DNA origami nanoneedles on freestanding lipid membranes as a tool to observe isotropic-nematic transition in two dimensions. , 2015, Nano letters.

[18]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[19]  S. Howorka,et al.  Membrane-Spanning DNA Nanopores with Cytotoxic Effect , 2014, Angewandte Chemie.

[20]  William M. Shih,et al.  Addressing the Instability of DNA Nanostructures in Tissue Culture , 2014, ACS nano.

[21]  Björn Högberg,et al.  Spatial control of membrane receptor function using ligand nanocalipers , 2014, Nature Methods.

[22]  Prakash Shrestha,et al.  Single-molecule mechanochemical sensing using DNA origami nanostructures. , 2014, Angewandte Chemie.

[23]  H. W. Lam,et al.  Catalytic 1,4-Rhodium(III) Migration Enables 1,3-Enynes to Function as One-Carbon Oxidative Annulation Partners in C–H Functionalizations , 2014, Angewandte Chemie.

[24]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[25]  Hao Yan,et al.  DNA-cholesterol barges as programmable membrane-exploring agents. , 2014, ACS nano.

[26]  Friedrich C. Simmel,et al.  DNA nanostructures interacting with lipid bilayer membranes. , 2014, Accounts of chemical research.

[27]  C. Wagner,et al.  Reversible re-programing of cell-cell interactions. , 2014, Angewandte Chemie.

[28]  Friedrich C Simmel,et al.  Hydrophobic actuation of a DNA origami bilayer structure. , 2014, Angewandte Chemie.

[29]  Jie Chao,et al.  Molecular logic gates on DNA origami nanostructures for microRNA diagnostics. , 2014, Analytical chemistry.

[30]  Yangyang Yang,et al.  Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. , 2014, Journal of the American Chemical Society.

[31]  T. LaBean,et al.  Sensitization of transforming growth factor-β signaling by multiple peptides patterned on DNA nanostructures. , 2013, Biomacromolecules.

[32]  Yamuna Krishnan,et al.  Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. , 2013, Nature nanotechnology.

[33]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[34]  H. Nonaka,et al.  Cell surface-anchored fluorescent aptamer sensor enables imaging of chemical transmitter dynamics. , 2012, Journal of the American Chemical Society.

[35]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[36]  J Christopher Love,et al.  Cell-surface sensors for real-time probing of cellular environments. , 2011, Nature nanotechnology.

[37]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[38]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[39]  Christopher R. So,et al.  Chemically self-assembled antibody nanorings (CSANs): design and characterization of an anti-CD3 IgM biomimetic. , 2010, Journal of the American Chemical Society.

[40]  Kersten S. Rabe,et al.  Orthogonal protein decoration of DNA origami. , 2010, Angewandte Chemie.

[41]  Christopher A. Voigt,et al.  Spatiotemporal Control of Cell Signalling Using A Light-Switchable Protein Interaction , 2009, Nature.

[42]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[43]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[44]  Carolyn R Bertozzi,et al.  Programmed assembly of 3-dimensional microtissues with defined cellular connectivity , 2009, Proceedings of the National Academy of Sciences.

[45]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[46]  Jayanta Debnath,et al.  Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. , 2003, Methods.

[47]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[48]  G. Bishop,et al.  The CH Series of Murine B Cell Lymphomas: Neoplastic Analogues of Ly‐1+ Normal B Cells , 1986, Immunological reviews.

[49]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[50]  S. Collins,et al.  Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia , 1979 .

[51]  S. Collins,et al.  Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture , 1977, Nature.