Properties of Lu3Al5O12, Lu3Al5O12:Pr, Lu3Al5O12:Pr,Mo, and (Lu1−xYx)3Al5O12:Pr scintillator crystals

Lattice parameters, magnetic susceptibility, electronic structure, distribution of the elements and thermal properties were examined for single crystals of Lu3Al5O12 (LuAG) and (Lu1−xYx)3Al5O12 (LuYAG) (x  =  0.25, 0.50, 0.75), either pure or doped with Pr and optionally co-doped with Mo, which are predicted as potential fast and efficient scintillators. It was indicated that specific cage-like surrounding of rare earth and aluminum ions built from oxygen ions and proper doping can influence the thermal conductivity and the emission process. Maximum light emission (LY) was observed at praseodymium concentration about 0.3 at.%. The growth atmosphere (Ar or N2) influences the crystal quality. Additional molybdenum doping below 0.01 at% concentration increases LY.

[1]  W. Drozdowski,et al.  A deeper insight into (Lu,Y)AG:Pr scintillator crystals , 2017 .

[2]  Xi-qi Feng,et al.  Role of Y Admixture in (Lu 1 -x Y x ) 3 Al 5 O 12 ∶Pr Ceramic Scintillators Free of Host Luminescence , 2016 .

[3]  Y. Zorenko,et al.  Comparison of the luminescent properties of Lu3Al5O12:Pr crystals and films under synchrotron radiation excitation , 2016 .

[4]  W. Drozdowski,et al.  Effect of Lu-to-Y ratio and Mo coactivation on scintillation properties of LuYAG:Pr and LuAG:Pr,Mo crystals , 2016 .

[5]  A. Yoshikawa,et al.  Recent R&D Trends in Inorganic Single‐Crystal Scintillator Materials for Radiation Detection , 2015 .

[6]  P. Dorenbos,et al.  33000 photons per MeV from mixed (Lu0.75Y0.25)3Al5O12:Pr scintillator crystals , 2014 .

[7]  W. Węglewski,et al.  Comparison of experimental and modelling results of thermal properties in Cu-AlN composite materials , 2013 .

[8]  K. Blažek,et al.  Development of LuAG-based scintillator crystals – A review , 2013 .

[9]  K. Kamada,et al.  Improvement of Scintillation Properties in Pr Doped ${\rm Lu}_{3}{\hbox {Al}}_{5}{\rm O}_{12}$ Scintillator by Ga and Y Substitutions , 2012, IEEE Transactions on Nuclear Science.

[10]  B. Liu,et al.  Theoretical Prediction of Elastic Stiffness and Minimum Lattice Thermal Conductivity of Y3Al5O12, YAlO3 and Y4Al2O9 , 2012 .

[11]  Xiaodong Xu,et al.  Crystal growth and optical properties of LuYAG:Ce single crystal , 2012 .

[12]  A. Vedda,et al.  Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping , 2011 .

[13]  Xiaodong Xu,et al.  Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal , 2010 .

[14]  Jun Xu,et al.  Spectral characterization and laser performance of a mixed crystal Nd:(LuxY1-x)3Al5O12. , 2010, Optics express.

[15]  A. Gottwald,et al.  Temperature-dependent Urbach tail measurements of lutetium aluminum garnet single crystals , 2010 .

[16]  J. Kusz,et al.  SQUID Magnetometry, EPR and XPS Characterization of Y3Al5O12: Co, Si Single Crystals. , 2009 .

[17]  T. Łukasiewicz,et al.  SQUID magnetometry, EPR and XPS characterization of Y3Al5O12: Co, Si single crystals , 2009 .

[18]  P. Dorenbos,et al.  Scintillation Properties of Praseodymium Activated ${\rm Lu}_{3}{\rm Al}_{5}{\rm O} _{12}$ Single Crystals , 2008, IEEE Transactions on Nuclear Science.

[19]  M. Malinowski,et al.  Investigation of Structural Perfection and Faceting in Highly Er-Doped Yb3Al5O12 Crystals. , 2008 .

[20]  L. Juncheng ACRT forced convection and its effects on solute segregation and heat and mass transfer during single crystal growth , 2008 .

[21]  A. Vedda,et al.  Time development of scintillating response in Ce- or Pr-doped crystals , 2007 .

[22]  K. Kamada,et al.  Scintillation characteristics of Pr-doped Lu3Al5O12 single crystals , 2006 .

[23]  T. Y. Fan,et al.  Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range , 2005 .

[24]  Martin Nikl,et al.  Photo‐ and radioluminescence of Pr‐doped Lu3Al5O12 single crystal , 2005 .

[25]  N. Ishizawa,et al.  Crystal growth and properties of (Lu,Y)3Al5O12 , 2004 .

[26]  Daniel Vivien,et al.  A simple model for the prediction of thermal conductivity in pure and doped insulating crystals , 2003 .

[27]  R. Macfarlane,et al.  Systematics of 4f electron energies relative to host bands by resonant photoemission of rare earth ions in aluminum garnets , 2001 .

[28]  Wai-Yim Ching,et al.  Electronic structure of yttrium aluminum garnet ( Y 3 Al 5 O 12 ) , 1999 .

[29]  S. Seal,et al.  ESCA Studies of Yttrium Aluminum Garnets , 1999 .

[30]  W. Wierzchowski,et al.  X-ray topographic investigation of growth defects and lattice parameter measurements within crystals of heavily neodymium doped yttrium aluminium garnet , 1995 .

[31]  H. G. Jerrard,et al.  Handbook of optical constant of solids: Edited by E.D. Palik Academic Press, 1985, pp xviii + 804, £110, $110 , 1986 .

[32]  C. Lan,et al.  Czochralski Silicon Crystal Growth for Photovoltaic Applications , 2009 .

[33]  J. Kusz,et al.  Electronic Structure of Y_{3}Al_{5}O_{12}:V Single Crystals, Comparison with Sintered Ceramics , 2009 .

[34]  A. Yoshikawa,et al.  Challenges in growth of high-performance scintillator crystals , 2007 .

[35]  B. Cockayne,et al.  An X-ray diffraction topographic study of single crystals of melt-grown yttrium aluminium garnet , 1968 .