A global shallow water model using high order multi-moment constrained finite volume method and icosahedral grid

A novel accurate numerical model for shallow water equations on sphere have been developed by implementing the high order multi-moment constrained finite volume (MCV) method on the icosahedral geodesic grid. High order reconstructions are conducted cell-wisely by making use of the point values as the unknowns distributed within each triangular cell element. The time evolution equations to update the unknowns are derived from a set of constrained conditions for two types of moments, i.e. the point values on the cell boundary edges and the cell-integrated average. The numerical conservation is rigorously guaranteed. In the present model, all unknowns or computational variables are point values and no numerical quadrature is involved, which particularly benefits the computational accuracy and efficiency in handling the spherical geometry, such as coordinate transformation and curved surface. Numerical formulations of third and fourth order accuracy are presented in detail. The proposed numerical model has been validated by widely used benchmark tests and competitive results are obtained. The present numerical framework provides a promising and practical base for further development of atmospheric and oceanic general circulation models.

[1]  David L. Williamson,et al.  INTEGRATION OF THE PRIMITIVE BAROTROPIC MODEL OVER A SPHERICAL GEODESIC GRID , 1970 .

[2]  John L. McGregor Semi-Lagrangian Advection on Conformal-Cubic Grids , 1996 .

[3]  Hirofumi Tomita,et al.  An optimization of the Icosahedral grid modified by spring dynamics , 2002 .

[4]  David L. Williamson,et al.  The Cartesian method for solving partial differential equations in spherical geometry , 1998 .

[5]  Yoshinobu Masuda,et al.  An Integration Scheme of the Primitive Equation Model with an Icosahedral-Hexagonal Grid System and its Application to the Shallow Water Equations , 1986 .

[6]  Michael Buchhold,et al.  The Operational Global Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests , 2002 .

[7]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[8]  Francis X. Giraldo,et al.  A nodal triangle-based spectral element method for the shallow water equations on the sphere , 2005 .

[9]  F. Mesinger,et al.  A global shallow‐water model using an expanded spherical cube: Gnomonic versus conformal coordinates , 1996 .

[10]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2005 .

[11]  Feng Xiao,et al.  A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments , 2005, Comput. Phys. Commun..

[12]  Akio Arakawa,et al.  Integration of the Nondivergent Barotropic Vorticity Equation with AN Icosahedral-Hexagonal Grid for the SPHERE1 , 1968 .

[13]  M. Satoh,et al.  An Accurate Semi-Lagrangian Scheme for Raindrop Sedimentation , 2003 .

[14]  G. R. Stuhne,et al.  New icosahedral grid-point discretization of the shallow water equation on the sphere , 1999 .

[15]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[16]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[17]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case , 2005 .

[18]  Yong Li,et al.  Numerical simulations of Rossby–Haurwitz waves , 2000 .

[20]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.

[21]  T. Yabe,et al.  Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation , 2001 .

[22]  David L. Williamson,et al.  Integration of the barotropic vorticity equation on a spherical geodesic grid , 1968 .

[23]  Feng Xiao,et al.  CIP/multi-moment finite volume method with arbitrary order of accuracy , 2007 .

[24]  C. Jablonowski,et al.  Moving Vortices on the Sphere: A Test Case for Horizontal Advection Problems , 2008 .

[25]  F. Xiao,et al.  A Multimoment Finite-Volume Shallow-Water Model On The Yin-Yang Overset Spherical Grid , 2008 .

[26]  Feng Xiao,et al.  Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows , 2006, J. Comput. Phys..

[27]  Charles A. Doswell,et al.  A Kinematic Analysis of Frontogenesis Associated with a Nondivergent Vortex , 1984 .

[28]  Hirofumi Tomita,et al.  Shallow water model on a modified icosahedral geodesic grid by using spring dynamics , 2001 .

[29]  Shian-Jiann Lin,et al.  Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..

[30]  P. Paolucci,et al.  The “Cubed Sphere” , 1996 .

[31]  Todd D. Ringler,et al.  Modeling the Atmospheric General Circulation Using a Spherical Geodesic Grid: A New Class of Dynamical Cores , 2000 .

[32]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[33]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[34]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[35]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[36]  D. Williamson The Evolution of Dynamical Cores for Global Atmospheric Models(125th Anniversary Issue of the Meteorological Society of Japan) , 2007 .

[37]  Feng Xiao,et al.  Unified formulation for compressible and incompressible flows by using multi-integrated moments I: one-dimensional inviscid compressible flow , 2004 .

[38]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[39]  R. K. Scott,et al.  An initial-value problem for testing numerical models of the global shallow-water equations , 2004 .

[40]  Feng Xiao,et al.  High order multi-moment constrained finite volume method. Part I: Basic formulation , 2009, J. Comput. Phys..

[41]  J. Hack,et al.  Spectral transform solutions to the shallow water test set , 1995 .

[42]  T. Yabe,et al.  The constrained interpolation profile method for multiphase analysis , 2001 .

[43]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[44]  Eric Deleersnijder,et al.  A finite element method for solving the shallow water equations on the sphere , 2009 .

[45]  J. Hack,et al.  Solutions to the Shallow Water Test Set Using the Spectral Transform Method , 1993 .

[46]  Mengping Zhang,et al.  An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods , 2005 .

[47]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[48]  Francis X. Giraldo,et al.  A spectral element shallow water model on spherical geodesic grids , 2001 .

[49]  R. Akoh,et al.  A CIP/multi-moment finite volume method for shallow water equations with source terms , 2008 .

[50]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .

[51]  Francis X. Giraldo,et al.  A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates , 2008, J. Comput. Phys..

[52]  Feng Xiao,et al.  CIP/multi-moment finite volume method for Euler equations: A semi-Lagrangian characteristic formulation , 2007, J. Comput. Phys..

[53]  Kenji Takizawa,et al.  Conservative form of interpolated differential operator scheme for compressible and incompressible fluid dynamics , 2008, J. Comput. Phys..

[54]  Francis X. Giraldo,et al.  High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere , 2006, J. Comput. Phys..

[55]  J. Côté,et al.  A Lagrange multiplier approach for the metric terms of semi‐Lagrangian models on the sphere , 1988 .

[56]  Yulong Xing,et al.  High order finite difference WENO schemes with the exact conservation property for the shallow water equations , 2005 .

[57]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[58]  R. Sadourny Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .

[59]  Jean-François Remacle,et al.  High-order discontinuous Galerkin schemes on general 2D manifolds applied to the shallow water equations , 2009, J. Comput. Phys..

[60]  W. Richard Peltier,et al.  A robust unstructured grid discretization for 3-dimensional hydrostatic flows in spherical geometry: A new numerical structure for ocean general circulation modeling , 2006, J. Comput. Phys..

[61]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[62]  Feng Xiao,et al.  Shallow water model on cubed-sphere by multi-moment finite volume method , 2008, J. Comput. Phys..

[63]  F. Xiao,et al.  Numerical simulations of free-interface fluids by a multi-integrated moment method , 2005 .

[64]  Takashi Yabe,et al.  A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver , 1991 .

[65]  James A. Rossmanith,et al.  A wave propagation method for hyperbolic systems on the sphere , 2006, J. Comput. Phys..

[66]  John L. McGregor Semi-Lagrangian Advection on a Cubic Gnomonic Projection of the Sphere , 1997 .

[67]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[68]  J. Wolf,et al.  The scaled boundary finite-element method – alias consistent infinitesimal finite element cell method – for diffusion , 1999 .

[69]  Jean Côté,et al.  Cascade interpolation for semi‐Lagrangian advection over the sphere , 1999 .

[70]  Todd D. Ringler,et al.  Climate modeling with spherical geodesic grids , 2002, Comput. Sci. Eng..