Metrology State-of-the-Art and Challenges in Broadband Phase-Sensitive Terahertz Measurements

The two main modalities for making broadband phase-sensitive measurements at terahertz (THz) frequencies are vector network analyzers (VNA) and time-domain spectrometers (TDS). These measuring instruments have separate and fundamentally different operating principles and methodologies, and they serve very different application spaces. The different architectures give rise to different measurement challenges and metrological solutions. This article reviews these two measurement techniques and discusses the different issues involved in making measurements using these systems. Calibration, verification, and measurement traceability issues are reviewed, along with other major challenges facing these instrument architectures in the years to come. The differences in, and similarities between, the two measurement methods are discussed and analyzed. Finally, the operating principles of electro–optic sampling (EOS) are briefly discussed. This technique has some similarities to TDS and shares application space with the VNA.

[1]  Wolfgang Heinrich,et al.  Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses , 2006 .

[2]  G. F. Engen,et al.  Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer , 1979 .

[3]  P. D. Hale,et al.  Traceability of high-speed electrical waveforms at NIST, NPL, and PTB , 2012, 2012 Conference on Precision electromagnetic Measurements.

[4]  Derek Abbott,et al.  The limit of spectral resolution in THz time-domain spectroscopy , 2004, SPIE Micro + Nano Materials, Devices, and Applications.

[5]  Richard Baraniuk,et al.  Material parameter estimation with terahertz time-domain spectroscopy. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Derek Abbott,et al.  Material thickness optimization for transmission-mode terahertz time-domain spectroscopy. , 2008, Optics express.

[7]  K. F. Sodomsky,et al.  An Explicit Solution for the Scattering Parameters of a Linear Two-Port Measured with an Imperfect Test Set (Correspondence) , 1971 .

[8]  Nick Ridler,et al.  Metrology for Vector Network Analyzers , 2015 .

[9]  N. M. Ridler,et al.  Evaluating the effect of using precision alignment dowels on connection repeatability of waveguide devices at frequencies from 750 GHz to 1.1 THz , 2014, 84th ARFTG Microwave Measurement Conference.

[10]  Martin Salter,et al.  Traceability to national standards for S-parameter measurements in waveguide at frequencies from 140 GHz to 220 GHz , 2010, 2010 76th ARFTG Microwave Measurement Conference.

[11]  Frank C. De Lucia,et al.  Noise, detectors, and submillimeter–terahertz system performance in nonambient environments , 2004 .

[12]  Dong-Joon Lee,et al.  Field analysis of electro-optic probes for minimally invasive microwave sampling. , 2014, Optics express.

[13]  Jack C. M. Wang,et al.  An optimal vector-network-analyzer calibration algorithm , 2003 .

[14]  D. Williams Comparison of Sub-Millimeter-Wave Scattering-Parameter Calibrations With Imperfect Electrical Ports , 2013, IEEE Transactions on Terahertz Science and Technology.

[15]  N.M. Ridler,et al.  Cross-connected waveguide lines as standards for millimeter- and submillimeter-wave vector network analyzers , 2013, 81st ARFTG Microwave Measurement Conference.

[16]  J. Coutaz,et al.  Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy. , 1999, Applied optics.

[17]  J. Coutaz,et al.  A reliable method for extraction of material parameters in terahertz time-domain spectroscopy , 1996 .

[18]  M. F. Kimmitt,et al.  Terahertz Spectroscopy: System and Sensitivity Considerations , 2011, IEEE Transactions on Terahertz Science and Technology.

[19]  Yozo Shimada,et al.  Frequency Calibration of Terahertz Time-Domain Spectrometer Using Air-Gap Etalon , 2014, IEEE Transactions on Terahertz Science and Technology.

[20]  Thomas Hochrein,et al.  Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends , 2015 .

[21]  R. Collin Foundations for microwave engineering , 1966 .

[22]  Robert M. Weikle,et al.  A ring-centered waveguide flange for millimeter- and submillimeter-wave applications , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[23]  P. G. Bartley,et al.  A new free-space calibration technique for materials measurement , 2012, 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings.

[24]  Kubilay Sertel,et al.  Non-Contact Probes for On-Wafer Characterization of Sub-Millimeter-Wave Devices and Integrated Circuits , 2014, IEEE Transactions on Microwave Theory and Techniques.

[25]  N. M. Ridler,et al.  Further investigations into connection repeatability of waveguide devices at frequencies from 750 GHz to 1.1 THz , 2014, 83rd ARFTG Microwave Measurement Conference.

[26]  Mark Bieler,et al.  Absolute Intensity Measurements of CW GHz and THz Radiation Using Electro-Optic Sampling , 2015, IEEE Transactions on Instrumentation and Measurement.

[27]  Hitoshi Iida,et al.  Validation of Power Linearity in Terahertz Time-Domain Spectroscopy Using a Programmable Step Attenuator , 2013, IEEE Transactions on Instrumentation and Measurement.

[28]  Thomas W. Crowe,et al.  VNA frequency extenders to 1.1 THz , 2011, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.

[29]  M. Havenith,et al.  Uncertainty and Ambiguity in Terahertz Parameter Extraction and Data Analysis , 2011 .

[30]  M. Koch,et al.  Highly accurate optical material parameter determination with THz time-domain spectroscopy. , 2007, Optics express.

[31]  Norihisa Hiromoto,et al.  Study on random errors in THz signal and optical constants observed with THz time-domain spectroscopy , 2010, 35th International Conference on Infrared, Millimeter, and Terahertz Waves.

[32]  Robert M. Weikle,et al.  A 1.1 THz micromachined on-wafer probe , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[33]  G. Engen,et al.  The Six-Port Reflectometer: An Alternative Network Analyzer , 1977, 1977 IEEE MTT-S International Microwave Symposium Digest.

[34]  I. Al-Naib,et al.  Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy. , 2011, Optics express.

[35]  Yozo Shimada,et al.  Recent Research Trends of Terahertz Measurement Standards , 2015, IEEE Transactions on Terahertz Science and Technology.

[36]  Masahiro Horibe,et al.  Metrological Traceability in Waveguide S-parameter Measurements at 1.0 THz Band , 2013, IEEE Transactions on Instrumentation and Measurement.

[37]  Dylan F. Williams,et al.  A General Waveguide Circuit Theory , 1992, Journal of research of the National Institute of Standards and Technology.

[38]  Thorsten Schrader,et al.  Verification of scattering parameter measurements in waveguides up to 325 GHz including highly-reflective devices , 2011 .

[39]  Thomas W. Crowe,et al.  THz vector network analyzer measurements and calibration , 2010 .

[40]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[41]  J. Coutaz,et al.  Influence of noise on the characterization of materials by terahertz time-domain spectroscopy , 2000 .

[42]  Mira Naftaly,et al.  Intercomparison of Terahertz Dielectric Measurements Using Vector Network Analyzer and Time-Domain Spectrometer , 2016 .

[43]  Akifumi Kasamatsu,et al.  Development of Complex Relative Permittivity Measurement System Based on Free-Space in 220–330-GHz Range , 2015, IEEE Transactions on Terahertz Science and Technology.

[44]  Martin Salter,et al.  Traceability to national standards for S-parameter measurements in waveguide at frequencies from 220 GHz to 330 GHz , 2011, 78th ARFTG Microwave Measurement Conference.

[45]  D. F. Williams,et al.  500 GHz–750 GHz Rectangular-Waveguide Vector-Network-Analyzer Calibrations , 2011, IEEE Transactions on Terahertz Science and Technology.

[46]  P. Kužel,et al.  Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy. , 2010, Optics express.

[47]  B. Fischer,et al.  Dynamic range in terahertz time-domain transmission and reflection spectroscopy. , 2005, Optics letters.

[48]  P. Goy,et al.  8-1000 GHz vector network analyzer , 1990, International Conference on Infrared and Millimeter Waves.

[49]  K. King–Aribisala Markets , 2004, Focus on Pigments.

[50]  Mira Naftaly,et al.  An international intercomparison of THz time-domain spectrometers , 2016, 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[51]  Nick M. Ridler,et al.  Establishing Traceability to the International System of Units for Scattering Parameter Measurements From 750 GHz to 1.1 THz , 2016, IEEE Transactions on Terahertz Science and Technology.

[52]  Mira Naftaly,et al.  Dynamic range improvement of THz spectroscopy , 2014, 29th Conference on Precision Electromagnetic Measurements (CPEM 2014).

[53]  R. Marks A Multi-Line Method of Network Analyzer Calibration | NIST , 1991 .

[54]  A. G. Roddie,et al.  Electrooptic sampling of low temperature GaAs pulse generators for oscilloscope calibration , 1996 .

[55]  Alan Wilson,et al.  The Trace Is on Measurements: Developing Traceability for S?Parameter Measurements at Millimeter and Submillimeter Wavelengths , 2013, IEEE Microwave Magazine.

[57]  R.M. Weikle,et al.  A millimeter-wave sampled-line six-port reflectometer at 300GHz , 2007, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics.

[58]  M. Koch,et al.  Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy , 2009 .

[59]  Glenn F. Engen,et al.  On-line accuracy assessment for the dual six-port ANA: Extension to nonmating connectors , 1987, IEEE Transactions on Instrumentation and Measurement.

[60]  Klaus Pierz,et al.  Time-Domain Optoelectronic Vector Network Analysis on Coplanar Waveguides , 2015, IEEE Transactions on Microwave Theory and Techniques.

[61]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[62]  R. Dubrovka,et al.  Revised metrology for enhanced accuracy in complex optical constant determination by THz-time-domain spectrometry. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  Yuqiang Deng,et al.  On-line calibration for linear time-base error correction of terahertz spectrometers with echo pulses , 2014 .

[64]  M. Urteaga,et al.  A Prescription for Sub-Millimeter-Wave Transistor Characterization , 2013, IEEE Transactions on Terahertz Science and Technology.

[65]  P. Hale,et al.  Covariance-based uncertainty analysis of the NIST electrooptic sampling system , 2006, IEEE transactions on microwave theory and techniques.

[66]  Xin-Ke Wang,et al.  Experimental characterization of hexaferrite ceramics from 100 GHz to 1 THz using vector network analysis and terahertz-time domain spectroscopy , 2011 .

[67]  M. Naftaly,et al.  Metrology Issues and Solutions in THz Time-Domain Spectroscopy: Noise, Errors, Calibration , 2013, IEEE Sensors Journal.

[68]  D. J. Bannister,et al.  Electro-optic S-parameter and electric-field profiling measurement of microwave integrated circuits , 1999 .

[69]  Martin Koch,et al.  On the Influence of Delay Line Uncertainty in THz Time-Domain Spectroscopy , 2016, 2102.05928.

[70]  M. Horibe,et al.  Performance of new design of waveguide flange for measurements at frequencies from 800 GHz to 1.05 THz , 2012, 79th ARFTG Microwave Measurement Conference.

[71]  N. Hiromoto,et al.  Exploration of the origin of random error in spectrum intensity measured with THz-TDS , 2010, 35th International Conference on Infrared, Millimeter, and Terahertz Waves.

[72]  N. M. Ridler,et al.  Investigating connection repeatability of waveguide devices at frequencies from 750 GHz to 1.1 THz , 2013, 82nd ARFTG Microwave Measurement Conference.

[73]  Robert Donnan,et al.  Accurate determination of terahertz optical constants by vector network analyzer of Fabry-Perot response. , 2013, Optics letters.

[74]  C. Elster,et al.  Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope , 2012 .

[75]  G. Chattopadhyay,et al.  Schottky diode-based terahertz frequency multipliers and mixers , 2010 .

[76]  Thomas Dekorsy,et al.  Origin of potential errors in the quantitative determination of terahertz optical properties in time-domain terahertz spectroscopy , 2015, CLEO 2015.

[77]  B. Fischer,et al.  Uncertainty in terahertz time-domain spectroscopy measurement , 2008 .

[78]  Martin Salter,et al.  Traceability to national standards for S-parameter measurements of waveguide devices from 110 GHz to 170 GHz , 2009, 2009 73rd ARFTG Microwave Measurement Conference.

[79]  A. Basu,et al.  Calibration of a 70 GHz Oscilloscope , 2004, 2004 Conference on Precision Electromagnetic Measurements.

[80]  K. Kurokawa,et al.  An introduction to the theory of microwave circuits , 1969 .