Species-specific combination and calibration between area-based and tree-based diameter distributions using airborne laser scanning

The planning of wood procurement requires reliable information about the species-specific timber assortments on which the economic value of a production forest depends. The timber assortments refer to the stem volumes of the sawlog and pulpwood fractions, specified in terms of both timber quality and allowable log dimensions, e.g., the stem diameter at breast height (dbh). We propose here an airborne laser scanning based calibration framework for generating species-specific dbh distributions that combines the area-based approach (ABA) and individual-tree detection (ITD), two established and independent approaches for retrieving forest attributes from airborne laser scanning data. Both ABA- and ITD-derived dbh distributions were generated nonparametrically for pine, spruce, coniferous, deciduous, and all species and assessed with respect to the plot-level species-specific total stem volume (m3·ha–1) and approximations of volume of timber assortments. Although after calibration, the total volume of all spec...

[1]  C. Hopkinson The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution , 2007 .

[2]  E. Næsset,et al.  Non-parametric prediction of diameter distributions using airborne laser scanner data , 2009 .

[3]  M. Maltamo,et al.  Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics , 2010 .

[4]  E. Næsset,et al.  Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data , 2009 .

[5]  Nicholas L. Crookston,et al.  yaImpute: An R Package for kNN Imputation , 2008 .

[6]  E. Næsset Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data , 2009 .

[7]  Petteri Packalen,et al.  Improving species-specific plot volume estimates based on airborne laser scanning and image data using alpha shape metrics and balanced field data , 2012 .

[8]  Philip Lewis,et al.  Simulating the impact of discrete-return lidar system and survey characteristics over young conifer and broadleaf forests , 2010 .

[9]  M. Maltamo,et al.  Impact of plot size and spatial pattern of forest attributes on sampling efficacy , 2015 .

[10]  A. Hudak,et al.  Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data , 2008 .

[11]  S. Popescu,et al.  A voxel-based lidar method for estimating crown base height for deciduous and pine trees , 2008 .

[12]  Petteri Packalen,et al.  Airborne laser scanning-based decision support for wood procurement planning , 2014 .

[13]  J. Hyyppä,et al.  Tree species classification using airborne LiDAR - effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type , 2010 .

[14]  M. Maltamo,et al.  Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs , 2008 .

[15]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[16]  P. Krzystek,et al.  Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data , 2012 .

[17]  M. Maltamo,et al.  Modelling percentile based basal area weighted diameter distribution , 2007 .

[18]  E. Næsset,et al.  Improving k-nearest neighbor predictions in forest inventories by combining high and low density airborne laser scanning data , 2012 .

[19]  Jörgen Wallerman,et al.  Estimating field-plot data of forest stands using airborne laser scanning and SPOT HRG data , 2007 .

[20]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[21]  Juha Hyyppä,et al.  The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve , 2004 .

[22]  J. Holmgren,et al.  Estimation of tree lists from airborne laser scanning by combining single-tree and area-based methods , 2010 .

[23]  Manfred Näslund,et al.  Skogsförsöksanstaltens gallringsförsök i tallskog , 1936 .

[24]  Jouni Siipilehto,et al.  Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem Number , 1999 .

[25]  Matti Maltamo,et al.  Comparing basal area diameter distributions estimated by tree species and for the entire growing stock in a mixed stand. , 1997 .

[26]  Peter Axelsson,et al.  Processing of laser scanner data-algorithms and applications , 1999 .

[27]  Annika Kangas,et al.  Propagating the errors of initial forest variables through stand- and tree-level growth simulators , 2010, European Journal of Forest Research.

[28]  M. Maltamo,et al.  Combining ALS and NFI training data for forest management planning: a case study in Kuortane, Western Finland , 2009, European Journal of Forest Research.

[29]  M. Maltamo,et al.  Calibration of area based diameter distribution with individual tree based diameter estimates using airborne laser scanning , 2014 .

[30]  Juha Hyyppä,et al.  Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data , 2012 .

[31]  E. Næsset,et al.  Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data , 2010 .

[32]  M. Maltamo,et al.  Predicting the spatial pattern of trees by airborne laser scanning , 2013 .

[33]  Suomen metsävarat 2004-2005 , 1970 .

[34]  George C. Hurtt,et al.  An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems , 2014 .

[35]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[36]  M. Maltamo,et al.  The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs , 2007 .

[37]  E. Næsset,et al.  Forestry Applications of Airborne Laser Scanning , 2014, Managing Forest Ecosystems.

[38]  John M. Gauch,et al.  Image segmentation and analysis via multiscale gradient watershed hierarchies , 1999, IEEE Trans. Image Process..

[39]  Åsa Persson,et al.  Species identification of individual trees by combining high resolution LiDAR data with multi‐spectral images , 2008 .