A tobacco homolog of DCN1 is involved in pollen development and embryogenesis

[1]  Richard D Vierstra,et al.  The cullin-RING ubiquitin-protein ligases. , 2011, Annual review of plant biology.

[2]  N. Zheng,et al.  Structural regulation of cullin-RING ubiquitin ligase complexes. , 2011, Current opinion in structural biology.

[3]  M. Ohh,et al.  NEDD8 pathways in cancer, Sine Quibus Non. , 2011, Cancer cell.

[4]  B. Schulman,et al.  A dual E3 mechanism for Rub1 ligation to Cdc53. , 2010, Molecular cell.

[5]  Peter G. Smith,et al.  Biochemical and cellular effects of inhibiting Nedd8 conjugation. , 2010, Biochemical and biophysical research communications.

[6]  S. Broderick,et al.  SCCRO promotes glioma formation and malignant progression in mice. , 2010, Neoplasia.

[7]  M. Estelle,et al.  The ubiquitin-proteasome system regulates plant hormone signaling. , 2010, The Plant journal : for cell and molecular biology.

[8]  I. Sumara,et al.  The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes , 2009, Proceedings of the National Academy of Sciences.

[9]  R. Vierstra The ubiquitin–26S proteasome system at the nexus of plant biology , 2009, Nature Reviews Molecular Cell Biology.

[10]  Bhuvanesh Singh,et al.  SCCRO (DCUN1D1) Is an Essential Component of the E3 Complex for Neddylation* , 2008, Journal of Biological Chemistry.

[11]  M. Peter,et al.  Function and regulation of protein neddylation , 2008, EMBO reports.

[12]  V. Schreiber,et al.  The expanding field of poly(ADP-ribosyl)ation reactions. ‘Protein Modifications: Beyond the Usual Suspects' Review Series , 2008, EMBO reports.

[13]  Chun-Ming Liu,et al.  Sexual reproduction in higher plants I: fertilization and the initiation of zygotic program. , 2008, Journal of integrative plant biology.

[14]  Yiyue Zhang,et al.  Targeted Degradation of the Cyclin-Dependent Kinase Inhibitor ICK4/KRP6 by RING-Type E3 Ligases Is Essential for Mitotic Cell Cycle Progression during Arabidopsis Gametogenesis[W][OA] , 2008, The Plant Cell Online.

[15]  J. Callis,et al.  Regulation of cullin RING ligases. , 2008, Annual review of plant biology.

[16]  J. Rodríguez-León,et al.  Exclusion of a Proton ATPase from the Apical Membrane Is Associated with Cell Polarity and Tip Growth in Nicotiana tabacum Pollen Tubes[W] , 2008, The Plant Cell Online.

[17]  E. Kipreos,et al.  Cullin-RING ubiquitin ligases: global regulation and activation cycles , 2008, Cell Division.

[18]  M. Tyers,et al.  Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation. , 2008, Molecular cell.

[19]  K. Boutilier,et al.  Functional genomics of microspore embryogenesis , 2007, Euphytica.

[20]  Sixue Chen,et al.  Proteomics of pollen development and germination. , 2007, Journal of proteome research.

[21]  W. Lukowitz,et al.  Embryonic patterning in Arabidopsis thaliana. , 2007, Annual review of cell and developmental biology.

[22]  S. Xing,et al.  Pollen Lethality: A Phenomenon in Arabidopsis RNA Interference Plants[C] , 2007, Plant Physiology.

[23]  T. Kiyosue,et al.  Genetic Characterization of Mutants Resistant to the Antiauxin p-Chlorophenoxyisobutyric Acid Reveals That AAR3, a Gene Encoding a DCN1-Like Protein, Regulates Responses to the Synthetic Auxin 2,4-Dichlorophenoxyacetic Acid in Arabidopsis Roots1[C][W] , 2007, Plant Physiology.

[24]  Lei Sun,et al.  Structural Basis for the Function of DCN-1 in Protein Neddylation* , 2007, Journal of Biological Chemistry.

[25]  Alisher Touraev,et al.  The resurgence of haploids in higher plants. , 2007, Trends in plant science.

[26]  K. Dreher,et al.  Ubiquitin, hormones and biotic stress in plants. , 2007, Annals of botany.

[27]  J. Cordewener,et al.  Combined Transcriptome and Proteome Analysis Identifies Pathways and Markers Associated with the Establishment of Rapeseed Microspore-Derived Embryo Development1[W] , 2007, Plant Physiology.

[28]  Meghna R. Malik,et al.  Transcript Profiling and Identification of Molecular Markers for Early Microspore Embryogenesis in Brassica napus1[W][OA] , 2007, Plant Physiology.

[29]  K. Manova,et al.  171: Creation of a SCCRO (DCN-1) knockout mouse results in decreased CUL3 neddylation and male infertility , 2007 .

[30]  Patrick Achard,et al.  F-box proteins everywhere. , 2006, Current opinion in plant biology.

[31]  Dirk Inzé,et al.  Cell cycle regulation in plant development. , 2006, Annual review of genetics.

[32]  U. Roessner,et al.  Transcriptional and metabolic profiles of stress-induced, embryogenic tobacco microspores , 2006, Plant Molecular Biology.

[33]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[34]  E. Heberle‐Bors,et al.  Stresses applied for the re‐programming of plant microspores towards in vitro embryogenesis , 2006 .

[35]  F. Baluška,et al.  Roles of the Ubiquitin/Proteasome Pathway in Pollen Tube Growth with Emphasis on MG132-Induced Alterations in Ultrastructure, Cytoskeleton, and Cell Wall Components1[W] , 2006, Plant Physiology.

[36]  R. Panstruga,et al.  A reference map of the Arabidopsis thaliana mature pollen proteome. , 2005, Biochemical and biophysical research communications.

[37]  W. Vensel,et al.  Proteome mapping of mature pollen of Arabidopsis thaliana , 2005, Proteomics.

[38]  U. Grossniklaus,et al.  Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. , 2005, The Plant journal : for cell and molecular biology.

[39]  H. Spaink,et al.  Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. , 2005, Journal of experimental botany.

[40]  Nurhan Özlü,et al.  The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae , 2005, Nature.

[41]  Hong Ma Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. , 2005, Annual review of plant biology.

[42]  X. Deng,et al.  Arabidopsis Has Two Redundant Cullin3 Proteins That Are Essential for Embryo Development and That Interact with RBX1 and BTB Proteins to Form Multisubunit E3 Ubiquitin Ligase Complexes in Vivow⃞ , 2005, The Plant Cell Online.

[43]  C. Schwechheimer,et al.  Cullin-containing E3 ubiquitin ligases in plant development. , 2004, Current opinion in plant biology.

[44]  David Twell,et al.  Transcriptome analysis of haploid male gametophyte development in Arabidopsis , 2004, Genome Biology.

[45]  H. Vodermaier,et al.  APC/C and SCF: Controlling Each Other and the Cell Cycle , 2004, Current Biology.

[46]  M. Bostick,et al.  Related to Ubiquitin 1 and 2 Are Redundant and Essential and Regulate Vegetative Growth, Auxin Signaling, and Ethylene Production in Arabidopsis , 2004, The Plant Cell Online.

[47]  R. Yadegari,et al.  Female Gametophyte Development , 2004, The Plant Cell Online.

[48]  S. McCormick Control of Male Gametophyte Development , 2004, The Plant Cell Online.

[49]  M. Estelle,et al.  Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. , 2004, Seminars in cell & developmental biology.

[50]  Junli Zhou,et al.  The F-Box Protein AhSLF-S2 Physically Interacts with S-RNases That May Be Inhibited by the Ubiquitin/26S Proteasome Pathway of Protein Degradation during Compatible Pollination in Antirrhinum , 2004, The Plant Cell Online.

[51]  B. Scheres,et al.  The Arabidopsis Anaphase-Promoting Complex or Cyclosome: Molecular and Genetic Characterization of the APC2 Subunit Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.013847. , 2003, The Plant Cell Online.

[52]  M. Estelle,et al.  The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis , 2003, The EMBO journal.

[53]  M. Estelle,et al.  Role of the Arabidopsis RING-H2 Protein RBX1 in RUB Modification and SCF Function Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003178. , 2002, The Plant Cell Online.

[54]  Hong Ma,et al.  The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. , 2002, The Plant cell.

[55]  M. Estelle,et al.  Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. , 2002, Molecular biology of the cell.

[56]  P. Gönczy,et al.  Cytoskeletal Regulation by the Nedd8 Ubiquitin-Like Protein Modification Pathway , 2002, Science.

[57]  M. Estelle,et al.  AXR1-ECR1–Dependent Conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 Is Required for Auxin Response Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010282. , 2002, The Plant Cell Online.

[58]  Keiji Tanaka,et al.  The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice , 2001, The Journal of cell biology.

[59]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[60]  N. Morozova,et al.  Two Phases of Chromatin Decondensation during Dedifferentiation of Plant Cells , 2001, The Journal of Biological Chemistry.

[61]  A. Shevchenko,et al.  Promotion of NEDD8-CUL1 Conjugate Cleavage by COP9 Signalosome , 2001, Science.

[62]  T. Sijen,et al.  Transcriptional and posttranscriptional gene silencing are mechanistically related , 2001, Current Biology.

[63]  M. Matzke,et al.  Transcriptional silencing and promoter methylation triggered by double‐stranded RNA , 2000, The EMBO journal.

[64]  Richard H. Glaven,et al.  Pollen–Pistil Interactions in Nicotiana tabacum , 2000 .

[65]  M. Estelle,et al.  The Arabidopsis cullin AtCUL1 is modified by the ubiquitin-related protein RUB1. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  W. McCombie,et al.  The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[67]  R. Crinelli,et al.  Development-related changes of protein ubiquitination in pollen from male and female kiwifruit (Actinidia deliciosa) , 1999 .

[68]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Goebl,et al.  Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. , 1998, Genes & development.

[70]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[71]  E. Heberle‐Bors,et al.  Initiation of microspore embryogenesis by stress , 1997 .

[72]  N. Sauer Sieve elements and companion cells — extreme division of labour , 1997 .

[73]  B. Ylstra,et al.  Flavonols are not essential for fertilization in Arabidopsis thaliana , 1996, Plant Molecular Biology.

[74]  E. Heberle‐Bors,et al.  Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies , 1996, Plant Cell Reports.

[75]  E. Heberle‐Bors,et al.  Maintenance of gametophytic development after symmetrical division in tobacco microspore culture , 1995, Sexual Plant Reproduction.

[76]  B. Feys,et al.  Arabidopsis Mutants Selected for Resistance to the Phytotoxin Coronatine Are Male Sterile, Insensitive to Methyl Jasmonate, and Resistant to a Bacterial Pathogen. , 1994, The Plant cell.

[77]  E. Heberle‐Bors,et al.  De novo transcription of specific mRNAs during the induction of tobacco pollen embryogenesis , 1993, Sexual Plant Reproduction.

[78]  A. Gleave A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome , 1992, Plant Molecular Biology.

[79]  M. Estelle,et al.  Growth and development of the axr1 mutants of Arabidopsis. , 1990, The Plant cell.

[80]  T. Thomas,et al.  Gene-expression programs in embryogenic and non-embryogenic carrot cultures , 1988, Planta.

[81]  E. Heberle‐Bors,et al.  In-situ seed production after pollination with in-vitro-matured, isolated pollen , 1988, Planta.

[82]  M. Bevan,et al.  GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants. , 1987, The EMBO journal.

[83]  J. Fry,et al.  A simple and general method for transferring genes into plants. , 1985, Science.

[84]  P. Wittich,et al.  Characterization of three novel members of the Arabidopsis SHAGGY-related protein kinase (ASK) multigene family , 2004, Plant Molecular Biology.

[85]  Burkhard Rost,et al.  The PredictProtein server , 2003, Nucleic Acids Res..

[86]  E. Heberle‐Bors,et al.  The microspore: A haploid multipurpose cell , 2001 .

[87]  P. Waterhouse,et al.  Gene expression: Total silencing by intron-spliced hairpin RNAs , 2000, Nature.

[88]  E. Heberle‐Bors,et al.  Microspore embryogenesis and in vitro pollen maturation in tobacco. , 1999, Methods in molecular biology.

[89]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.

[90]  Yoshihiro Ugawa,et al.  Plant cis-acting regulatory DNA elements (PLACE) database: 1999 , 1999, Nucleic Acids Res..

[91]  J. Power,et al.  Leaf disk transformation. , 1995, Methods in molecular biology.

[92]  J. Doyle,et al.  Isolation of plant DNA from fresh tissue , 1990 .