The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis.

[1]  T. Barkman,et al.  Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes , 2016, Proceedings of the National Academy of Sciences.

[2]  I. Mayrose,et al.  Whole-genome duplication as a key factor in crop domestication , 2016, Nature Plants.

[3]  Saravanaraj N. Ayyampalayam,et al.  A Phylogenomic Assessment of Ancient Polyploidy and Genome Evolution across the Poales , 2016, Genome biology and evolution.

[4]  Tao Xia,et al.  Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis) , 2016, Journal of experimental botany.

[5]  David Sankoff,et al.  The pineapple genome and the evolution of CAM photosynthesis , 2015, Nature Genetics.

[6]  Youxiang Zhou,et al.  Genome-Wide Identification of Genes Probably Relevant to the Uniqueness of Tea Plant (Camellia sinensis) and Its Cultivars , 2015, International journal of genomics.

[7]  Sudhir Kumar,et al.  Tree of Life Reveals Clock-Like Speciation and Diversification , 2014, Molecular biology and evolution.

[8]  supYong Liu,et al.  Global Expansion Strategy of Chinese Herbal Tea Beverage , 2015 .

[9]  Jayarama,et al.  The coffee genome provides insight into the convergent evolution of caffeine biosynthesis , 2014, Science.

[10]  Tetsuya Hayashi,et al.  Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads , 2014, Genome research.

[11]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[12]  A. Krogh,et al.  Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization , 2014, Proceedings of the National Academy of Sciences.

[13]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[14]  Amborella Genome The Amborella Genome and the Evolution of Flowering Plants , 2013, Science.

[15]  Wei Tang,et al.  Draft genome of the kiwifruit Actinidia chinensis , 2013, Nature Communications.

[16]  M. Long,et al.  New genes as drivers of phenotypic evolution , 2013, Nature Reviews Genetics.

[17]  Mira V. Han,et al.  Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. , 2013, Molecular biology and evolution.

[18]  Douglas G. Scofield,et al.  The Norway spruce genome sequence and conifer genome evolution , 2013, Nature.

[19]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[20]  Tao Xia,et al.  Purification and Characterization of a Novel Galloyltransferase Involved in Catechin Galloylation in the Tea Plant (Camellia sinensis)* , 2012, The Journal of Biological Chemistry.

[21]  Guangrui Huang,et al.  HaploMerger: Reconstructing allelic relationships for polymorphic diploid genome assemblies , 2012, Genome research.

[22]  Daniel W. A. Buchan,et al.  The tomato genome sequence provides insights into fleshy fruit evolution , 2012, Nature.

[23]  David M. A. Martin,et al.  Genome sequence and analysis of the tuber crop potato , 2011, Nature.

[24]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[25]  Eran Pichersky,et al.  Convergent evolution in plant specialized metabolism. , 2011, Annual review of plant biology.

[26]  Elaine R. Mardis,et al.  The draft genome of the parasitic nematode Trichinella spiralis , 2011, Nature Genetics.

[27]  Walter Pirovano,et al.  BIOINFORMATICS APPLICATIONS , 2022 .

[28]  J. Poulain,et al.  The genome of Theobroma cacao , 2011, Nature Genetics.

[29]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[30]  R. Kuttan,et al.  Beneficial effects of green tea: A literature review , 2010, Chinese medicine.

[31]  D. Weigel,et al.  Selective epigenetic control of retrotransposition in Arabidopsis , 2009, Nature.

[32]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[33]  H. Ashihara,et al.  Biosynthesis of theanine (γ-ethylamino-l-glutamic acid) in seedlings of Camellia sinensis , 2008 .

[34]  Chhandak Basu,et al.  Plant terpenoids: applications and future potentials , 2008 .

[35]  M. Heiss,et al.  The Story of Tea: A Cultural History and Drinking Guide , 2007 .

[36]  C. Pleydell-Pearce,et al.  Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together , 2007, Psychopharmacology.

[37]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[38]  H. Mukhtar,et al.  Tea polyphenols for health promotion. , 2007, Life sciences.

[39]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[40]  Bernard R. Baum,et al.  Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components , 1997, Plant Molecular Biology Reporter.

[41]  Jonathan D. G. Jones,et al.  The plant immune system , 2006, Nature.

[42]  Reyes Artacho,et al.  Beneficial Effects of Green Tea—A Review , 2006, Journal of the American College of Nutrition.

[43]  D. Bowles,et al.  A class of plant glycosyltransferases involved in cellular homeostasis , 2004, The EMBO journal.

[44]  M. Bennett,et al.  Perspectives on polyploidy in plants – ancient and neo , 2004 .

[45]  Jianxin Ma,et al.  Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. , 2004, Genome research.

[46]  Kato Misako,et al.  Caffeine synthase and related methyltransferases in plants. , 2004, Frontiers in bioscience : a journal and virtual library.

[47]  A. Bhattacharya,et al.  Recent Advances of Tea (Camellia Sinensis) Biotechnology , 2004, Plant Cell, Tissue and Organ Culture.

[48]  E. Ganko,et al.  Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences , 2004, BMC Genomics.

[49]  Miao Sun,et al.  SAGE is far more sensitive than EST for detecting low-abundance transcripts , 2004, BMC Genomics.

[50]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[51]  John F. McDonald,et al.  LTR_STRUC: a novel search and identification program for LTR retrotransposons , 2003, Bioinform..

[52]  S. Eddy,et al.  Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.

[53]  James K. M. Brown,et al.  Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. , 2002, Genome research.

[54]  M. Morgante,et al.  Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. , 2001, Genome research.

[55]  A. Crozier,et al.  Caffeine: a well known but little mentioned compound in plant science. , 2001, Trends in plant science.

[56]  Ben Weinberg,et al.  The World of Caffeine: The Science and Culture of the World's Most Popular Drug , 2000 .

[57]  山本 武彦,et al.  Chemistry and applications of green tea , 1997 .

[58]  A. Crozier,et al.  Caffeine biosynthesis in young leaves of Camellia sinensis : In vitro studies on N-methyltransferase activity involved in the conversion of xanthosine to caffeine , 1996 .

[59]  B. Banerjee Botanical classification of tea , 1992 .

[60]  T. Suzuki,et al.  Metabolism and Analysis of Caffeine and Other Methylxanthines in Coffee, Tea, Cola, Guarana and Cacao , 1988 .