Split-radix algorithms for length-p/sup m/ DFTs
暂无分享,去创建一个
[1] Pierre Duhamel,et al. Existence of a 2n FFT algorithm with a number of multiplications lower than 2n+1 , 1984 .
[2] Douglas L. Jones,et al. Real-valued fast Fourier transform algorithms , 1987, IEEE Trans. Acoust. Speech Signal Process..
[3] Pierre Duhamel,et al. Implementation of "Split-radix" FFT algorithms for complex, real, and real-symmetric data , 1986, IEEE Trans. Acoust. Speech Signal Process..
[4] R. Stasinski. Easy generation of small-Ndiscrete Fourier transform algorithms , 1986 .
[5] M. Vetterli,et al. Simple FFT and DCT algorithms with reduced number of operations , 1984 .
[6] E. Dubois,et al. A new algorithm for the radix-3 FFT , 1978 .
[7] Martin Vetterli,et al. Split-radix algorithms for length-pm DFT's , 1989, IEEE Trans. Acoust. Speech Signal Process..
[8] P. Duhamel,et al. `Split radix' FFT algorithm , 1984 .
[9] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[10] C. Sidney Burrus,et al. On computing the split-radix FFT , 1986, IEEE Trans. Acoust. Speech Signal Process..
[11] C. Sidney Burrus,et al. On the number of multiplications necessary to compute a length-2nDFT , 1986, IEEE Trans. Acoust. Speech Signal Process..
[12] Irving John Good,et al. The Interaction Algorithm and Practical Fourier Analysis , 1958 .
[13] Ken'iti Kido,et al. A new FFT algorithm of radix 3, 6, and 12 , 1986, IEEE Trans. Acoust. Speech Signal Process..
[14] J. Martens. Recursive cyclotomic factorization--A new algorithm for calculating the discrete Fourier transform , 1984 .