Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field

Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.

[1]  M. Qin,et al.  Symplectic Geometric Algorithms for Hamiltonian Systems , 2010 .

[2]  Hong Qin,et al.  Volume-preserving algorithms for charged particle dynamics , 2015, J. Comput. Phys..

[3]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[4]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[5]  Haruo Yoshida,et al.  Recent progress in the theory and application of symplectic integrators , 1993 .

[6]  H. Qin,et al.  Variational integration for ideal magnetohydrodynamics with built-in advection equations , 2014, 1408.1346.

[7]  Hong Qin,et al.  Volume-preserving algorithm for secular relativistic dynamics of charged particles , 2015 .

[8]  Molei Tao,et al.  Explicit symplectic approximation of nonseparable Hamiltonians: Algorithm and long time performance. , 2016, Physical review. E.

[9]  Bradley Allan Shadwick,et al.  Variational formulation of macro-particle plasma simulation algorithms , 2014 .

[10]  Ernst Hairer,et al.  Symmetric multistep methods for charged-particle dynamics , 2017 .

[11]  David Howe,et al.  Qualitative and Quantitative , 2014 .

[12]  P. Stott,et al.  Plasma Physics and Controlled Fusion Conference: Focussing on Tokamak Research , 1995 .

[13]  Jian Liu,et al.  Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations , 2015, 1503.08334.

[14]  Hong Qin,et al.  Lorentz covariant canonical symplectic algorithms for dynamics of charged particles , 2016, 1609.07019.

[15]  K. Kormann,et al.  GEMPIC: geometric electromagnetic particle-in-cell methods , 2016, Journal of Plasma Physics.

[16]  Hong Qin,et al.  Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme , 2012, 1401.6723.

[17]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[18]  H. Knoepfel,et al.  Runaway electrons in toroidal discharges , 1979 .

[19]  S. Chin,et al.  Symplectic and energy-conserving algorithms for solving magnetic field trajectories. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  S. Webb A spectral canonical electrostatic algorithm , 2015, 1508.07344.

[21]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[22]  Hong Qin,et al.  Comment on "Hamiltonian splitting for the Vlasov-Maxwell equations" , 2015, J. Comput. Phys..

[23]  Jianyuan Xiao,et al.  A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system , 2013 .

[24]  E. G. Evstatiev,et al.  Variational formulation of particle algorithms for kinetic E&M plasma simulations , 2012, 2016 IEEE International Conference on Plasma Science (ICOPS).

[25]  Hong Qin,et al.  Explicit K-symplectic algorithms for charged particle dynamics , 2017 .

[26]  A. Kunoth,et al.  Journal of Computational and Applied Mathematics Manuscript Draft Title: an Optimization Based Empirical Mode Decomposition Scheme Title: an Optimization Based Empirical Mode Decomposition Scheme an Optimization Based Empirical Mode Decomposition Scheme , 2012 .

[27]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[28]  Jian Liu,et al.  2 2 M ay 2 01 5 Hamiltonian integration methods for Vlasov-Maxwell equations , 2015 .

[29]  Jianyuan Xiao,et al.  Explicit symplectic algorithms based on generating functions for charged particle dynamics. , 2016, Physical review. E.

[30]  Jianyuan Xiao,et al.  Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems , 2015, 1510.06972.

[31]  W. Marsden I and J , 2012 .

[32]  Hong Qin,et al.  Collisionless pitch-angle scattering of runaway electrons , 2015, 1510.00780.

[33]  Nicolas Crouseilles,et al.  Hamiltonian splitting for the Vlasov-Maxwell equations , 2014, J. Comput. Phys..

[34]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[35]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[36]  Jian Liu,et al.  Why is Boris algorithm so good , 2013 .

[37]  Yulei Wang,et al.  The accurate particle tracer code , 2016, Comput. Phys. Commun..

[38]  Wojciech Rozmus,et al.  A symplectic integration algorithm for separable Hamiltonian functions , 1990 .

[39]  K. Feng Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .

[40]  Molei Tao,et al.  Explicit high-order symplectic integrators for charged particles in general electromagnetic fields , 2016, J. Comput. Phys..