Stationary two-dimensional magnetohydrodynamic flows with shocks: characteristic analysis and grid convergence study

Abstract Five model flows of increasing complexity belonging to the class of stationary two-dimensional planar field-aligned magnetohydrodynamic (MHD) flows are presented which are well suited to the quantitative evaluation of MHD codes. The physical properties of these five flows are investigated using characteristic theory. Grid convergence criteria for flows belonging to this class are derived from characteristic theory, and grid convergence is demonstrated for the numerical simulation of the five model flows with a standard high-resolution finite volume numerical MHD code on structured body-fitted grids. In addition, one model flow is presented which is not field-aligned, and it is discussed how grid convergence can be studied for this flow. By formal grid convergence studies of magnetic flux conservation and other flow quantities, it is investigated whether the Powell source term approach to controlling the ∇· B constraint leads to correct results for the class of flows under consideration.

[1]  J. P. Goedbloed,et al.  Stationary symmetric magnetohydrodynamic flows , 1997 .

[2]  Kenneth G. Powell,et al.  Three‐dimensional multiscale MHD model of cometary plasma environments , 1996 .

[3]  Eli Turkel,et al.  Accuracy of schemes with nonuniform meshes for compressible fluid flows , 1986 .

[4]  Paul R. Woodward,et al.  Extension of the Piecewise Parabolic Method to Multidimensional Ideal Magnetohydrodynamics , 1994 .

[5]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[6]  R. Keppens,et al.  Implicit and semi-implicit schemes in the Versatile Advection Code : numerical tests , 1998 .

[7]  Timothy J. Barth,et al.  Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.

[8]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[9]  T. Tanaka,et al.  Configurations of the solar wind flow and magnetic field around the planets with no magnetic field : calculation by a new MHD simulation scheme , 1993 .

[10]  Dinshaw S. Balsara,et al.  Notes on the Eigensystem of Magnetohydrodynamics , 1996, SIAM J. Appl. Math..

[11]  Nikolai V. Pogorelov,et al.  Shock-Capturing Approach and Nonevolutionary Solutions in Magnetohydrodynamics , 1996 .

[12]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[13]  Rho-Shin Myong,et al.  On Godunov-Type Schemes for Magnetohydrodynamics , 1998 .

[14]  C. Russell,et al.  HYDRODYNAMIC AND MHD EQUATIONS ACROSS THE BOW SHOCK AND ALONG THE SURFACES OF PLANETARY OBSTACLES , 1997 .

[15]  Paul R. Woodward,et al.  An approximate Riemann solver for ideal magnetohydrodynamics , 1994 .

[16]  C. Richard DeVore,et al.  Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics , 1989 .

[17]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[18]  Du San,et al.  Comparison of Some Flux Corrected Transport and Total Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydrodynamic Problems , 1996 .

[19]  S. Poedts,et al.  Complex magnetohydrodynamic bow shock topology in field-aligned low-β flow around a perfectly conducting cylinder , 1998 .

[20]  R. Keppens,et al.  Numerical simulations of stellar winds: polytropic models , 1999 .

[21]  Eliezer Hameiri,et al.  The equilibrium and stability of rotating plasmas , 1983 .

[22]  Dongsu Ryu,et al.  Numerical magetohydrodynamics in astronphysics: Algorithm and tests for one-dimensional flow` , 1995 .

[23]  D. L. De Zeeuw,et al.  Interaction of the Saturnian magnetosphere with Titan: Results of a three‐dimensional MHD simulation , 1999 .

[24]  J. Anderson Magnetohydrodynamic Shock Waves , 1963 .

[25]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[26]  R. LeVeque Numerical methods for conservation laws , 1990 .

[27]  T. Linde,et al.  A three-dimensional adaptive multifluid MHD model of the heliosphere. , 1998 .

[28]  S. A. E. G. Falle,et al.  A multidimensional upwind scheme for magnetohydrodynamics , 1998 .

[29]  Dongsu Ryu,et al.  Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow , 1995 .

[30]  M. Vinokur,et al.  EFFECT OF VARYING STRENGTH AND ORIENTATION OF LOCAL INTERSTELLAR MAGNETIC FIELD ON CONFIGURATION OF EXTERIOR HELIOSPHERE : 3D MHD SIMULATIONS , 1998 .

[31]  R. LeVeque,et al.  Nonlinear Conservation Laws and Finite Volume Methods for Astrophysical Fluid Flow , 1998 .

[32]  A. Jefrey,et al.  Non-Linear Wave Propagation , 1964 .

[33]  J. P. Goedbloed,et al.  Transonic magnetohydrodynamic flows , 1997, Journal of Plasma Physics.

[34]  Poedts,et al.  Intermediate shocks in three-dimensional magnetohydrodynamic bow-shock flows with multiple interacting shock fronts , 2000, Physical review letters.

[35]  D. Roose,et al.  A Bow Shock Flow Containing (Almost) All Types of (‘Exotic’) MHD Discontinuities , 1998 .

[36]  G. Tóth,et al.  Comparison of Some Flux Corrected Transport and Total Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydrodynamic Problems , 1996 .

[37]  M. Norman,et al.  ZEUS-2D : a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II : The magnetohydrodynamic algorithms and tests , 1992 .

[38]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[39]  Phillip Colella,et al.  A Higher-Order Godunov Method for Multidimensional Ideal Magnetohydrodynamics , 1994, SIAM J. Sci. Comput..

[40]  Paul R. Woodward,et al.  On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .

[41]  Philip L. Roe,et al.  Heliosphere in the magnetized local interstellar medium' Results of a three-dimensional MHD , 1998 .

[42]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[43]  Michael L. Norman,et al.  A test suite for magnetohydrodynamical simulations , 1992 .

[44]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[45]  T. Sakurai Magnetohydrodynamic solar/stellar wind models , 1990 .

[46]  C. Schwab hp-FEM for Fluid Flow Simulation , 1999 .

[47]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[48]  Kenneth G. Powell,et al.  Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results , 1994 .

[49]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[50]  Tsuneo Tanaka Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields , 1994 .

[51]  H. De Sterck,et al.  Characteristic analysis of a complex two-dimensional magnetohydrodynamic bow shock flow with steady compound shocks , 1999 .

[52]  H. Deconinck,et al.  Monotone Residual Distribution Schemes for the Ideal Magnetohydrodynamic Equations on Unstructured Grids , 2001 .

[53]  J. Goedbloed,et al.  Dynamics of hot filaments in a tokamak plasma , 1998, Journal of Plasma Physics.

[54]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[55]  P. A. Thompson,et al.  Compressible Fluid Dynamics , 1972 .

[56]  H. Grad Reducible Problems in Magneto-Fluid Dynamic Steady Flows , 1960 .