On the Wave Turbulence Theory for the Nonlinear Schrödinger Equation with Random Potentials

We derive new kinetic and a porous medium equations from the nonlinear Schrödinger equation with random potentials. The kinetic equation has a very similar form compared to the four-wave turbulence kinetic equation in the wave turbulence theory. Moreover, we construct a class of self-similar solutions for the porous medium equation. These solutions spread with time, and this fact answers the “weak turbulence” question for the nonlinear Schrödinger equation with random potentials. We also derive Ohm’s law for the porous medium equation.

[1]  Shi Jin,et al.  Quantum hydrodynamic approximations to the finite temperature trapped Bose gases , 2017, Physica D: Nonlinear Phenomena.

[2]  A numerical and symbolical approximation of the Nonlinear Anderson Model , 2009, 0912.3906.

[3]  Sergey Nazarenko,et al.  Wave turbulence and intermittency , 2001 .

[4]  Minh-Binh Tran,et al.  Optimal local well-posedness theory for the kinetic wave equation , 2017, Journal of Functional Analysis.

[5]  G. P. Berman,et al.  The Fermi-Pasta-Ulam problem : 50 years of progress , 2022 .

[6]  A weak turbulence theory for incompressible magnetohydrodynamics , .

[7]  Gregory Falkovich,et al.  Kolmogorov Spectra of Turbulence I: Wave Turbulence , 1992 .

[8]  S. Nazarenko,et al.  Noisy spectra, long correlations, and intermittency in wave turbulence. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Minh-Binh Tran,et al.  A reaction network approach to the convergence to equilibrium of quantum Boltzmann equations for Bose gases , 2016, ESAIM: Control, Optimisation and Calculus of Variations.

[10]  Minh-Binh Tran,et al.  On the dynamics of finite temperature trapped Bose gases , 2016, 1609.07686.

[11]  Erwan Faou,et al.  The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation , 2013, 1308.6267.

[12]  S. Flach Spreading, Nonergodicity, and Selftrapping: A Puzzle of Interacting Disordered Lattice Waves , 2015, 1512.01279.

[13]  G. Berman,et al.  The Fermi-Pasta-Ulam problem: fifty years of progress. , 2004, Chaos.

[14]  A. Pikovsky,et al.  Destruction of Anderson localization by a weak nonlinearity. , 2007, Physical review letters.

[15]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[16]  D. O. Krimer,et al.  Universal spreading of wave packets in disordered nonlinear systems. , 2008, Physical review letters.

[17]  D. O. Krimer,et al.  Delocalization of wave packets in disordered nonlinear chains. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  S. Fishman,et al.  Perturbation theory for the nonlinear Schrödinger equation with a random potential , 2009, 0901.4951.

[19]  S. Fishman,et al.  The nonlinear Schrödinger equation with a random potential: results and puzzles , 2011, 1108.2956.

[20]  I. Vakulchyk,et al.  Wave Packet Spreading with Disordered Nonlinear Discrete-Time Quantum Walks. , 2019, Physical review letters.

[21]  H. Korsch,et al.  Bose-Einstein condensates on tilted lattices: Coherent, chaotic, and subdiffusive dynamics , 2009, 0904.4549.

[22]  Zaher Hani,et al.  Long-time Instability and Unbounded Sobolev Orbits for Some Periodic Nonlinear Schrödinger Equations , 2012, 1210.7509.

[23]  S. Flach,et al.  Nonlinear Lattice Waves in Random Potentials , 2014, 1405.1122.

[24]  Minh-Binh Tran,et al.  On coupling kinetic and Schrödinger equations , 2016, Journal of Differential Equations.

[25]  L. Reichl,et al.  A kinetic equation for ultra-low temperature Bose–Einstein condensates , 2019, Journal of Physics A: Mathematical and Theoretical.

[26]  Zhifei Zhang,et al.  Long Time Anderson Localization for the Nonlinear Random Schrödinger Equation , 2008, 0805.3520.

[27]  S. Flach,et al.  Weakly Nonergodic Dynamics in the Gross-Pitaevskii Lattice. , 2017, Physical review letters.

[28]  Alan C. Newell,et al.  Wave Turbulence , 2011 .

[29]  S. Nazarenko,et al.  Probability densities and preservation of randomness in wave turbulence , 2004, math-ph/0409071.

[30]  S. Fishman,et al.  Eigenvalue repulsion estimates and some applications for the one-dimensional Anderson model , 2011, 1102.2109.

[31]  David K Campbell,et al.  Introduction: The Fermi-Pasta-Ulam problem--the first fifty years. , 2005, Chaos.

[32]  Y. Pomeau,et al.  Statistical Physics of Non Equilibrium Quantum Phenomena , 2019, Lecture Notes in Physics.

[33]  B. Tuck Some explicit solutions to the non-linear diffusion equation , 1976 .