Reconstruction of two-dimensional signals from the fourier transform magnitude

Originally presented as author's thesis (Sc. D.--Massachusetts Institute of Technology), 1986.

[1]  M. Bôcher Introduction to higher algebra , 2013 .

[2]  H. Piaggio Algebraic Functions , 1952, Nature.

[3]  E. J. Akutowicz On the determination of the phase of a Fourier integral. I , 1956 .

[4]  A. Walther The Question of Phase Retrieval in Optics , 1963 .

[5]  EDWARD M. HOFSTETTER,et al.  Construction of time-limited functions with specified autocorrelation functions , 1964, IEEE Trans. Inf. Theory.

[6]  W. Ledermann,et al.  Introduction to Higher Algebra , 1965 .

[7]  A. Labeyrie Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images , 1970 .

[8]  M. Marden Geometry of Polynomials , 1970 .

[9]  G. N. Ramachandran,et al.  Fourier methods in crystallography , 1970 .

[10]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[11]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[12]  R.H.T. Bates,et al.  Inferring phase information from modulus information in two-dimensional aperture synthesis , 1974 .

[13]  David Y. Y. Yun HENSEL MEETS NEWTON — ALGEBRAIC CONSTRUCTIONS IN AN ANALYTIC SETTING , 1976 .

[14]  John D. Lipson Newton's method: a great algebraic algorithm , 1976, SYMSAC '76.

[15]  Alan V. Oppenheim,et al.  Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[17]  James R. Fienup,et al.  Space Object Imaging Through The Turbulent Atmosphere , 1978, Optics & Photonics.

[18]  Gary Alan Shaw Design, stability and performance of two-dimensional recursive digital filters , 1979 .

[19]  L. G. Sodin,et al.  On the ambiguity of the image reconstruction problem , 1979 .

[20]  A. Oppenheim,et al.  Signal reconstruction from phase or magnitude , 1980 .

[21]  A. Huiser,et al.  Ambiguity of the phase-reconstruction problem. , 1980, Optics letters.

[22]  Thomas Kailath,et al.  Linear Systems , 1980 .

[23]  Kenneth Steiglitz,et al.  Phase unwrapping by factorization , 1982 .

[24]  M. Hayes,et al.  Reducible polynomials in more than one variable , 1982, Proceedings of the IEEE.

[25]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[26]  M. Hayes The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform , 1982 .

[27]  Erich Kaltofen,et al.  A polynomial-time reduction from bivariate to univariate integral polynomial factorization , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[28]  N. Bose Applied multidimensional systems theory , 1982 .

[29]  Erich Kaltofen,et al.  Factorization of Polynomials , 1983 .

[30]  Thomas S. Huang,et al.  Unique reconstruction of a band-limited multidimensional signal from its phase or magnitude , 1983 .

[31]  N. Canterakis Magnitude-only reconstruction of two-dimensional sequences with finite regions of support , 1983 .

[32]  James R. Fienup,et al.  Comments on "The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform" , 1983 .

[33]  Fernando Cukierman,et al.  Stability of unique Fourier-transform phase reconstruction , 1983 .

[34]  R. H. T. Bates,et al.  Composite two-dimensional phase-restoration procedure , 1983 .

[35]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[36]  Jae S. Lim,et al.  Signal reconstruction from one bit of Fourier transform phase , 1984, ICASSP.

[37]  Thomas S. Huang,et al.  A note on iterative fourier transform phase reconstruction from magnitude , 1984 .

[38]  Aharon Levi,et al.  Image restoration by the method of generalized projections with application to restoration from magnitude , 1984 .

[39]  Thomas S. Huang,et al.  Polynomial system of equations and its applications to the study of the effect of noise on multidimensional Fourier transform phase retrieval from magnitude , 1985, IEEE Trans. Acoust. Speech Signal Process..

[40]  M. A. Fiddy,et al.  The use of bivariate polynomial factorization algorithms in two-dimensional phase problems , 1985 .

[41]  M A Fiddy,et al.  Solution of the two-dimensional phase-retrieval problem. , 1985, Optics letters.

[42]  D. Mnyama,et al.  Improving Initial Phase Estimates for Phase Retrieval Algorithms , 1985 .

[43]  A. Zakhor,et al.  A note on the sampling of zero crossings of two-dimensional signals , 1986, Proceedings of the IEEE.

[44]  Alan V. Oppenheim,et al.  Reconstruction of Multidimensional Signals from Zero Crossings* , 1986, Topical Meeting On Signal Recovery and Synthesis II.

[45]  C. Hoffmann Algebraic curves , 1988 .