Critical depth and critical turbulence: Two different mechanisms for the development of phytoplankton blooms

A turbulent diffusion model shows that there are two different mechanisms for the development of phytoplankton blooms. One of these mechanisms works in well‐mixed environments and corresponds to the classical critical depth theory. The other mechanism is based on the rate of turbulent mixing. If turbulent mixing is less than a critical turbulence, phytoplankton growth rates exceed the vertical mixing rates, and a bloom develops irrespective of the depth of the upper water layer. These results demonstrate that phytoplankton blooms can develop in the absence of vertical water‐column stratification.

[1]  V. Smetácek,et al.  Spring bloom initiation and Sverdrup's critical‐depth model , 1990 .

[2]  H. Sverdrup,et al.  On Conditions for the Vernal Blooming of Phytoplankton , 1953 .

[3]  Janet K. Thompson,et al.  Does the Sverdrup critical depth model explain bloom dynamics in estuaries , 1998 .

[4]  D. M. Nelson,et al.  Sverdrup revisited: Critical depths, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance‐mixing regime , 1991 .

[5]  B. Osborne,et al.  Light and Photosynthesis in Aquatic Ecosystems. , 1985 .

[6]  S. Carpenter,et al.  Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes , 1998 .

[7]  M. D. Keller,et al.  Spring phytoplankton blooms in the absence of vertical water column stratification , 1992, Nature.

[8]  Global stability of stationary solutions to a nonlinear diffusion equation in phytoplankton dynamics , 1982 .

[9]  Percy L. Donaghay,et al.  Toward a theory of biological‐physical control of harmful algal bloom dynamics and impacts , 1997 .

[10]  Stephen R. Carpenter,et al.  Center for Limnology, University of Wisconsin, 680 N. Park St., Madison, Wisconsin 53717 , 1998 .

[11]  P. Harrison,et al.  Spring bloom in the central Strait of Georgia: interactions of river discharge, winds and grazing , 1996 .

[12]  明 大久保,et al.  Diffusion and ecological problems : mathematical models , 1980 .

[13]  Franz J. Weissing,et al.  Competition for Nutrients and Light in a Mixed Water Column: A Theoretical Analysis , 1995, The American Naturalist.

[14]  L. R. Mur,et al.  Sedimentation losses of Scenedesmus in relation to mixing depth , 1996 .

[15]  Franz J. Weissing,et al.  Growth and competition in a light gradient , 1994 .

[16]  S. Totaro Mutual shading effect on algal distribution: a nonlinear problem , 1989 .

[17]  Hans Chr. Ellertsen Spring blooms and stratification , 1993, Nature.

[18]  J. Cloern Tidal stirring and phytoplankton bloom dynamics in an estuary , 1991 .

[19]  Ann E. Gargett,et al.  Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean , 1983 .

[20]  T. Platt,et al.  Critical depth and marine primary production , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[21]  P. Tréguer,et al.  Contrast in biological responses to tidally-induced vertical mixing for two macrotidal ecosystems of Western Europe , 1996 .

[22]  Franz J. Weissing,et al.  Competition for light between phytoplankton species : Experimental tests of mechanistic theory , 1999 .

[23]  J. Huisman POPULATION DYNAMICS OF LIGHT-LIMITED PHYTOPLANKTON: MICROCOSM EXPERIMENTS , 1999 .

[24]  Franz J. Weissing,et al.  Light-limited growth and competition for light in well-mixed aquatic environments : An elementary model , 1994 .

[25]  K. Mann,et al.  Dynamics of Marine Ecosystems: Biological and Physical Interactions in the Oceans , 1997 .

[26]  A. Ōkubo,et al.  Analysis of the self-shading effect on algal vertical distribution in natural waters , 1981 .

[27]  J. Huisman,et al.  Species Dynamics in Phytoplankton Blooms: Incomplete Mixing and Competition for Light , 1999, The American Naturalist.

[28]  Fridtjof Nansen,et al.  The polar oceans and their role in shaping the global environment : the Nansen centennial volume , 1994 .

[29]  T. Berman,et al.  Phytoplankton development and turbulent mixing in Lake Kinneret (1992–1996) , 1998 .

[30]  H. Matthijs,et al.  Comparison of the light‐limited growth of the nitrogen‐fixing cyanobacteria Anabaena and Aphanizomenon , 1998 .

[31]  Colin S. Reynolds,et al.  The ecology of freshwater phytoplankton , 1984 .

[32]  B. Ibelings,et al.  Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands , 1996 .

[33]  S. Monismith,et al.  Coupled effects of vertical mixing and benthic grazing on phytoplankton populations in shallow, turbid estuaries , 1993 .

[34]  S. MacIntyre,et al.  Vertical mixing in a shallow, eutrophic lake: Possible consequences for the light climate of phytoplankton , 1993 .

[35]  A. Morel Consequences of a Synechococcus bloom upon the optical properties of oceanic (case 1) waters , 1997 .

[36]  F. Kestner,et al.  Physical oceanography of estuaries (and associated coastal waters) , 1977 .

[37]  D. Slagstad,et al.  Dynamics of plankton growth in the Barents Sea : model studies , 1991 .

[38]  A. Obata,et al.  Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data , 1996 .