The Power and Limitations of Uniform Samples in Testing Properties of Figures

We investigate testing of properties of 2-dimensional figures that consist of a black object on a white background. Given a parameter $${\epsilon }\in (0,1/2)$$ϵ∈(0,1/2), a tester for a specified property has to accept with probability at least 2/3 if the input figure satisfies the property and reject with probability at least 2/3 if it is $${\epsilon }$$ϵ-far from satisfying the property. In general, property testers can query the color of any point in the input figure. We study the power of testers that get access only to uniform samples from the input figure. We show that for the property of being a half-plane, the uniform testers are as powerful as general testers: they require only $$O({\epsilon }^{-1})$$O(ϵ-1) samples. In contrast, we prove that convexity can be tested with $$O({\epsilon }^{-1})$$O(ϵ-1) queries by testers that can make queries of their choice while uniform testers for this property require $$\varOmega ({\epsilon }^{-5/4})$$Ω(ϵ-5/4) samples. Previously, the fastest known tester for convexity needed $$\varTheta ({\epsilon }^{-4/3})$$Θ(ϵ-4/3) queries.

[1]  Ronitt Rubinfeld,et al.  The complexity of approximating the entropy , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[2]  Shai Avidan,et al.  FasT-Match: Fast Affine Template Matching , 2013, CVPR.

[3]  Ronitt Rubinfeld,et al.  Spot-checkers , 1998, STOC '98.

[4]  Wojciech Szpankowski,et al.  Average Case Analysis of Algorithms on Sequences: Szpankowski/Average , 2001 .

[5]  W. Szpankowski Average Case Analysis of Algorithms on Sequences , 2001 .

[6]  Ronitt Rubinfeld Taming big probability distributions , 2012, XRDS.

[7]  Eldar Fischer,et al.  Trading Query Complexity for Sample-Based Testing and Multi-testing Scalability , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[8]  Oded Goldreich,et al.  Property Testing - Current Research and Surveys , 2010, Property Testing.

[9]  Dana Ron,et al.  Algorithmic and Analysis Techniques in Property Testing , 2010, Found. Trends Theor. Comput. Sci..

[10]  Christian Sohler,et al.  Testing for Forbidden Order Patterns in an Array , 2017, SODA.

[11]  Ronitt Rubinfeld,et al.  Testing Closeness of Discrete Distributions , 2010, JACM.

[12]  Ronitt Rubinfeld,et al.  A sublinear algorithm for weakly approximating edit distance , 2003, STOC '03.

[13]  Manuel Blum,et al.  Self-testing/correcting with applications to numerical problems , 1990, STOC '90.

[14]  Ronitt Rubinfeld,et al.  Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..

[15]  Dana Ron,et al.  Testing Monotonicity , 2000, Comb..

[16]  Bernd Schmeltz Learning Convex Sets Under Uniform Distribution , 1992, Data Structures and Efficient Algorithms.

[17]  Daniel Reichman,et al.  Tight Approximation of Image Matching , 2011, ArXiv.

[18]  Piotr Berman,et al.  The Power and Limitations of Uniform Samples in Testing Properties of Figures , 2016, FSTTCS.

[19]  Sofya Raskhodnikova,et al.  Testing if an Array Is Sorted , 2016, Encyclopedia of Algorithms.

[20]  Oded Goldreich,et al.  Combinatorial property testing (a survey) , 1997, Randomization Methods in Algorithm Design.

[21]  Dana Ron,et al.  Property Testing in Bounded Degree Graphs , 1997, STOC.

[22]  Dana Ron,et al.  Improved Testing Algorithms for Monotonicity , 1999, Electron. Colloquium Comput. Complex..

[23]  Sofya Raskhodnikova,et al.  A Note on Adaptivity in Testing Properties of Bounded Degree Graphs , 2006, Electron. Colloquium Comput. Complex..

[24]  Piotr Berman,et al.  Tolerant Testers of Image Properties , 2016, ICALP.

[25]  Artur Czumaj,et al.  Property Testing in Computational Geometry , 2000, ESA.

[26]  Sofya Raskhodnikova,et al.  Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps , 2017, ICALP.

[27]  Noga Alon,et al.  A combinatorial characterization of the testable graph properties: it's all about regularity , 2006, STOC '06.

[28]  Clément L. Canonne,et al.  A Survey on Distribution Testing: Your Data is Big. But is it Blue? , 2020, Electron. Colloquium Comput. Complex..

[29]  Piotr Berman,et al.  Testing convexity of figures under the uniform distribution , 2016, SoCG.

[30]  Ronitt Rubinfeld,et al.  Spot-Checkers , 2000, J. Comput. Syst. Sci..

[31]  A. M. Andrew,et al.  Another Efficient Algorithm for Convex Hulls in Two Dimensions , 1979, Inf. Process. Lett..

[32]  Daniel Keren,et al.  Applying Property Testing to an Image Partitioning Problem , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Dana Ron,et al.  Strong Lower Bounds for Approximating Distribution Support Size and the Distinct Elements Problem , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[34]  Sofya Raskhodnikova,et al.  XX : 3 1 . 1 Parameters and Properties Studied in this Work , 2017 .

[35]  Ilan Newman,et al.  Testing Periodicity , 2009, Algorithmica.

[36]  Nimrod Megiddo,et al.  Partitioning with Two Lines in the Plane , 1985, J. Algorithms.

[37]  Santosh S. Vempala,et al.  Testing Geometric Convexity , 2004, FSTTCS.

[38]  Sofya Raskhodnikova,et al.  Approximate Testing of Visual Properties , 2003, RANDOM-APPROX.

[39]  Eli Ben-Sasson,et al.  Some 3CNF properties are hard to test , 2003, STOC '03.

[40]  Ronitt Rubinfeld,et al.  Monotonicity testing over general poset domains , 2002, STOC '02.

[41]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[42]  Paul Valiant Testing symmetric properties of distributions , 2008, STOC '08.

[43]  Oded Goldreich,et al.  Introduction to Property Testing , 2017 .

[44]  Artur Czumaj,et al.  Property Testing with Geometric Queries , 2001, ESA.

[45]  Dana Ron,et al.  Testing Properties of Sparse Images , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[46]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[47]  Sofya Raskhodnikova,et al.  Testing and Reconstruction of Lipschitz Functions with Applications to Data Privacy , 2013, SIAM J. Comput..

[48]  Dana Ron,et al.  On Sample-Based Testers , 2016, TOCT.

[49]  Ronitt Rubinfeld,et al.  Linearity Testing/Testing Hadamard Codes , 2008, Encyclopedia of Algorithms.