Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins

[1]  Y. Levy Intrinsically disordered regions as affinity tuners in protein–DNA interactions , 2012 .

[2]  Mihaela Zavolan,et al.  PAPD5, a noncanonical poly(A) polymerase with an unusual RNA-binding motif. , 2011, RNA.

[3]  L. Twyffels,et al.  Shuttling SR proteins: more than splicing factors , 2011, The FEBS journal.

[4]  P. Gallay,et al.  Cyclophilin A Interacts with Domain II of Hepatitis C Virus NS5A and Stimulates RNA Binding in an Isomerase-Dependent Manner , 2011, Journal of Virology.

[5]  J. Darnell,et al.  Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction , 2011, Nature Structural &Molecular Biology.

[6]  Yaakov Levy,et al.  DNA search efficiency is modulated by charge composition and distribution in the intrinsically disordered tail , 2010, Proceedings of the National Academy of Sciences.

[7]  Sarath Chandra Janga,et al.  A Screen for RNA-Binding Proteins in Yeast Indicates Dual Functions for Many Enzymes , 2010, PloS one.

[8]  R. Russell,et al.  WD40 proteins propel cellular networks. , 2010, Trends in biochemical sciences.

[9]  Robert B Darnell,et al.  RNA regulation in neurologic disease and cancer. , 2010, Cancer research and treatment : official journal of Korean Cancer Association.

[10]  Julia Salzman,et al.  Proteome-Wide Search Reveals Unexpected RNA-Binding Proteins in Saccharomyces cerevisiae , 2010, PloS one.

[11]  M. Hentze,et al.  The REM phase of gene regulation. , 2010, Trends in biochemical sciences.

[12]  Matthias W. Hentze,et al.  Two to Tango: Regulation of Mammalian Iron Metabolism , 2010, Cell.

[13]  Mohsen Khorshid,et al.  PAR-CliP - A Method to Identify Transcriptome-wide the Binding Sites of RNA Binding Proteins , 2010, Journal of visualized experiments : JoVE.

[14]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[15]  J. Hansen,et al.  Multifunctionality of the linker histones: an emerging role for protein-protein interactions , 2010, Cell Research.

[16]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[17]  L. Lessard,et al.  The two faces of PTP1B in cancer. , 2010, Biochimica et biophysica acta.

[18]  Y. Levy,et al.  Searching DNA via a "Monkey Bar" mechanism: the significance of disordered tails. , 2010, Journal of molecular biology.

[19]  Matthias Mann,et al.  Unbiased RNA–protein interaction screen by quantitative proteomics , 2009, Proceedings of the National Academy of Sciences.

[20]  Jennifer L. Bachorik,et al.  Gemin5-snRNA interaction reveals an RNA binding function for WD repeat domains , 2009, Nature Structural &Molecular Biology.

[21]  R. Aebersold,et al.  Comparative Functional Analysis of the Caenorhabditis elegans and Drosophila melanogaster Proteomes , 2009, PLoS biology.

[22]  Lili Wan,et al.  RNA and Disease , 2009, Cell.

[23]  Tyson A. Clark,et al.  HITS-CLIP yields genome-wide insights into brain alternative RNA processing , 2008, Nature.

[24]  Steven P Gygi,et al.  The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry , 2008, Nature Protocols.

[25]  V. Tiranti,et al.  FASTKD2 nonsense mutation in an infantile mitochondrial encephalomyopathy associated with cytochrome c oxidase deficiency. , 2008, American journal of human genetics.

[26]  Kai-Wei Chang,et al.  RNA-binding proteins in human genetic disease. , 2008, Trends in genetics : TIG.

[27]  T. Glisovic,et al.  RNA‐binding proteins and post‐transcriptional gene regulation , 2008, FEBS letters.

[28]  M. Cristina Cardoso,et al.  A Versatile Nanotrap for Biochemical and Functional Studies with Fluorescent Fusion Proteins*S , 2008, Molecular & Cellular Proteomics.

[29]  Jingwu Z. Zhang,et al.  Cyclophilin A Is Required for CXCR4-mediated Nuclear Export of Heterogeneous Nuclear Ribonucleoprotein A2, Activation and Nuclear Translocation of ERK1/2, and Chemotactic Cell Migration* , 2008, Journal of Biological Chemistry.

[30]  Gabriele Varani,et al.  RNA is rarely at a loss for companions; as soon as RNA , 2008 .

[31]  Patrick G. A. Pedrioli,et al.  A high-quality catalog of the Drosophila melanogaster proteome , 2007, Nature Biotechnology.

[32]  Christopher J. Oldfield,et al.  Intrinsic disorder and functional proteomics. , 2007, Biophysical journal.

[33]  Z. Dominski,et al.  Characterization of 3′hExo, a 3′ Exonuclease Specifically Interacting with the 3′ End of Histone mRNA* , 2006, Journal of Biological Chemistry.

[34]  J. Ebert,et al.  The Crystal Structure of the Exon Junction Complex Reveals How It Maintains a Stable Grip on mRNA , 2006, Cell.

[35]  Joachim M. Buhmann,et al.  Semi-supervised LC/MS alignment for differential proteomics , 2006, ISMB.

[36]  A. Pastore,et al.  Fragile X Mental Retardation Protein (FMRP) Binds Specifically to the Brain Cytoplasmic RNAs BC1/BC200 via a Novel RNA-binding Motif* , 2005, Journal of Biological Chemistry.

[37]  P. Tompa,et al.  The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. , 2005, Journal of molecular biology.

[38]  C. Thiele,et al.  Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells , 2005, Nature Methods.

[39]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[40]  Lincoln Stein,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Res..

[41]  S. Burley,et al.  She2p Is a Novel RNA Binding Protein with a Basic Helical Hairpin Motif , 2004, Cell.

[42]  Ian Lee,et al.  RAP--a putative RNA-binding domain. , 2004, Trends in biochemical sciences.

[43]  Peter Tompa,et al.  The role of structural disorder in the function of RNA and protein chaperones , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[44]  S. Shetty,et al.  Regulation of urokinase receptor expression by phosphoglycerate kinase. , 2004, American journal of respiratory cell and molecular biology.

[45]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[46]  Jernej Ule,et al.  CLIP Identifies Nova-Regulated RNA Networks in the Brain , 2003, Science.

[47]  Gary Brewer,et al.  Lactate Dehydrogenase Is an AU-rich Element-binding Protein That Directly Interacts with AUF1* , 2002, The Journal of Biological Chemistry.

[48]  J. Xu,et al.  Molecular cloning, structure and expression of a novel nuclear RNA-binding cyclophilin-like gene (PPIL4) from human fetal brain , 2002, Cytogenetic and Genome Research.

[49]  Eugene V Koonin,et al.  Comparative genomics and evolution of proteins involved in RNA metabolism. , 2002, Nucleic acids research.

[50]  D. Thiel,et al.  Lack of catalytic activity of a murine mRNA cytoplasmic serine hydroxymethyltransferase splice variant: evidence against alternative splicing as a regulatory mechanism. , 2001, Biochemistry.

[51]  L. Grivell,et al.  Isolation and RNA-binding analysis of NAD+-isocitrate dehydrogenases from Kluyveromyces lactis and Schizosaccharomyces pombe , 2000, Current Genetics.

[52]  O. Kops,et al.  A nuclear RNA‐binding cyclophilin in human T cells , 1996, FEBS letters.

[53]  J. Hofsteenge,et al.  AUH, a gene encoding an AU-specific RNA binding protein with intrinsic enoyl-CoA hydratase activity. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Eszter Nagy,et al.  Glyceraldehyde-3-phosphate Dehydrogenase Selectively Binds AU-rich RNA in the NAD+-binding Region (Rossmann Fold) (*) , 1995, The Journal of Biological Chemistry.

[55]  M. Hentze,et al.  Enzymes as RNA-binding proteins: a role for (di)nucleotide-binding domains? , 1994, Trends in biochemical sciences.

[56]  L. Grivell,et al.  Yeast mitochondrial NAD(+)-dependent isocitrate dehydrogenase is an RNA-binding protein. , 1993, Nucleic acids research.

[57]  P. Argos,et al.  Homology between IRE-BP, a regulatory RNA-binding protein, aconitase, and isopropylmalate isomerase. , 1991, Nucleic acids research.

[58]  R. Klausner,et al.  Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: Functional implications , 1991, Cell.

[59]  P. V. von Hippel,et al.  Laser cross-linking of nucleic acids to proteins. Methodology and first applications to the phage T4 DNA replication system. , 1986, The Journal of biological chemistry.

[60]  G. Dreyfuss,et al.  Characterization of heterogeneous nuclear RNA-protein complexes in vivo with monoclonal antibodies , 1984, Molecular and cellular biology.

[61]  J R Greenberg,et al.  Ultraviolet light-induced crosslinking of mRNA to proteins. , 1979, Nucleic acids research.

[62]  D. Söll,et al.  Analogs of methionyl-tRNA synthetase substrates containing photolabile groups. , 1977, Nucleic acids research.

[63]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[64]  J. Somarelli,et al.  Spliceosomal immunophilins , 2008, FEBS letters.

[65]  M. Mann,et al.  Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips , 2007, Nature Protocols.

[66]  J. Cieśla Metabolic enzymes that bind RNA: yet another level of cellular regulatory network? , 2006, Acta biochimica Polonica.

[67]  G. Goldspink,et al.  RNA–protein interactions of the 3′ untranslated regions of myosin heavy chain transcripts , 2004, Journal of Muscle Research & Cell Motility.

[68]  Ingrid Lönnstedt Replicated microarray data , 2001 .

[69]  D. Angelov,et al.  Crosslinking proteins to nucleic acids by ultraviolet laser irradiation. , 1991, Trends in biochemical sciences.

[70]  R. Brimacombe,et al.  [19] Intra-RNA and RNA—protein cross-linking techniques in Escherichia coli ribosomes , 1988 .

[71]  R. Brimacombe,et al.  Intra-RNA and RNA-protein cross-linking techniques in Escherichia coli ribosomes. , 1988, Methods in enzymology.