MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases

BackgroundIncreasingly, metabolite and reaction information is organized in the form of genome-scale metabolic reconstructions that describe the reaction stoichiometry, directionality, and gene to protein to reaction associations. A key bottleneck in the pace of reconstruction of new, high-quality metabolic models is the inability to directly make use of metabolite/reaction information from biological databases or other models due to incompatibilities in content representation (i.e., metabolites with multiple names across databases and models), stoichiometric errors such as elemental or charge imbalances, and incomplete atomistic detail (e.g., use of generic R-group or non-explicit specification of stereo-specificity).DescriptionMetRxn is a knowledgebase that includes standardized metabolite and reaction descriptions by integrating information from BRENDA, KEGG, MetaCyc, Reactome.org and 44 metabolic models into a single unified data set. All metabolite entries have matched synonyms, resolved protonation states, and are linked to unique structures. All reaction entries are elementally and charge balanced. This is accomplished through the use of a workflow of lexicographic, phonetic, and structural comparison algorithms. MetRxn allows for the download of standardized versions of existing genome-scale metabolic models and the use of metabolic information for the rapid reconstruction of new ones.ConclusionsThe standardization in description allows for the direct comparison of the metabolite and reaction content between metabolic models and databases and the exhaustive prospecting of pathways for biotechnological production. This ever-growing dataset currently consists of over 76,000 metabolites participating in more than 72,000 reactions (including unresolved entries). MetRxn is hosted on a web-based platform that uses relational database models (MySQL).

[1]  Rolf Müller,et al.  The impact of bacterial genomics on natural product research. , 2005, Angewandte Chemie.

[2]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[3]  Oliver Kohlbacher,et al.  MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization , 2008, Bioinform..

[4]  T. Jeffries,et al.  Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. , 2004, Metabolic engineering.

[5]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Rick L Stevens,et al.  iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations , 2009, Genome Biology.

[7]  R. Müller,et al.  Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. , 2005, Current opinion in biotechnology.

[8]  Kevin M. Smith,et al.  Metabolic engineering of Escherichia coli for 1-butanol production. , 2008, Metabolic engineering.

[9]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[10]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[11]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[12]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[13]  Amos Bairoch,et al.  The ENZYME database in 2000 , 2000, Nucleic Acids Res..

[14]  Dietmar Schomburg,et al.  BKM-react, an integrated biochemical reaction database , 2011, BMC Biochemistry.

[15]  Bernhard O. Palsson,et al.  Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets , 2007 .

[16]  Michael Hucka,et al.  LibSBML: an API Library for SBML , 2008, Bioinform..

[17]  J. Liao,et al.  Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels , 2008, Nature.

[18]  Susumu Goto,et al.  KEGG for representation and analysis of molecular networks involving diseases and drugs , 2009, Nucleic Acids Res..

[19]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[20]  S. Rao,et al.  PathMiner: predicting metabolic pathways by heuristic search , 2003, Bioinform..

[21]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[22]  L. Nielsen,et al.  Modeling Hybridoma Cell Metabolism Using a Generic Genome‐Scale Metabolic Model of Mus musculus , 2008, Biotechnology progress.

[23]  C. Maranas,et al.  An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. , 2006, Metabolic engineering.

[24]  D. Stahl,et al.  Molecular Systems Biology 3; Article number 92; doi:10.1038/msb4100131 Citation: Molecular Systems Biology 3:92 , 2022 .

[25]  Lynda B. M. Ellis,et al.  The University of Minnesota Biocatalysis/Biodegradation Database: improving public access , 2009, Nucleic Acids Res..

[26]  Adam M. Feist,et al.  Modeling methanogenesis with a genome‐scale metabolic reconstruction of Methanosarcina barkeri , 2006 .

[27]  Costas D Maranas,et al.  Microbial 1-butanol production: Identification of non-native production routes and in silico engineering interventions. , 2010, Biotechnology journal.

[28]  Bernhard O. Palsson,et al.  Metabolic Reconstruction and Modeling of Nitrogen Fixation in Rhizobium etli , 2007, PLoS Comput. Biol..

[29]  Neil Swainston,et al.  Integration of metabolic databases for the reconstruction of genome-scale metabolic networks , 2010, BMC Systems Biology.

[30]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[31]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.

[32]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[33]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[34]  J. Nielsen,et al.  Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. , 2005, Genome research.

[35]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[36]  Bas Teusink,et al.  Analysis of Growth of Lactobacillus plantarum WCFS1 on a Complex Medium Using a Genome-scale Metabolic Model* , 2006, Journal of Biological Chemistry.

[37]  Lake-Ee Quek,et al.  On the reconstruction of the Mus musculus genome-scale metabolic network model. , 2008, Genome informatics. International Conference on Genome Informatics.

[38]  Sang Yup Lee,et al.  Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network , 2008, Applied Microbiology and Biotechnology.

[39]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[40]  J. Nielsen,et al.  Analysis of Aspergillus nidulans metabolism at the genome-scale , 2008, BMC Genomics.

[41]  Jong Myoung Park,et al.  Genome-scale analysis of Mannheimia succiniciproducens metabolism. , 2007, Biotechnology and bioengineering.

[42]  Esko Ukkonen,et al.  ReMatch: a web-based tool to construct, store and share stoichiometric metabolic models with carbon maps for metabolic flux analysis , 2008, J. Integr. Bioinform..

[43]  Lynda B. M. Ellis,et al.  The University of Minnesota Biocatalysis/Biodegradation Database: the first decade , 2005, Nucleic Acids Res..

[44]  B. Palsson,et al.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation , 2005, BMC Microbiology.

[45]  Gert Vriend,et al.  Correcting ligands, metabolites, and pathways , 2006, BMC Bioinformatics.

[46]  Bas Teusink,et al.  Accelerating the reconstruction of genome-scale metabolic networks , 2006, BMC Bioinformatics.

[47]  Jason A. Papin,et al.  * Corresponding authors , 2006 .

[48]  Rolf Apweiler,et al.  IntEnz, the integrated relational enzyme database , 2004, Nucleic Acids Res..

[49]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[50]  Antje Chang,et al.  BRENDA, the enzyme information system in 2011 , 2010, Nucleic Acids Res..

[51]  E. Papoutsakis,et al.  Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. , 2008, Metabolic engineering.

[52]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[53]  Markus J. Herrgård,et al.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology , 2008, Nature Biotechnology.

[54]  C. Schilling,et al.  Flux coupling analysis of genome-scale metabolic network reconstructions. , 2004, Genome research.

[55]  H. Blaschek,et al.  Enhanced Butanol Production by Clostridium beijerinckii BA101 Grown in Semidefined P2 Medium Containing 6 Percent Maltodextrin or Glucose , 1997, Applied and environmental microbiology.

[56]  David A. Fell,et al.  Detection of stoichiometric inconsistencies in biomolecular models , 2008, Bioinform..

[57]  Y. Jang,et al.  Metabolic engineering of Clostridium acetobutylicum M 5 for highly selective butanol production , 2009 .

[58]  Bernhard O. Palsson,et al.  A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory , 2008, BMC Systems Biology.

[59]  A. Barabasi,et al.  Predicting synthetic rescues in metabolic networks , 2008, Molecular systems biology.

[60]  Stephen S. Fong,et al.  Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production , 2010, BMC Systems Biology.

[61]  G. Stephanopoulos,et al.  Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. , 2005, Metabolic engineering.

[62]  Sunwon Park,et al.  Prediction of novel synthetic pathways for the production of desired chemicals , 2010, BMC Systems Biology.

[63]  Orland R. Gonzalez,et al.  Reconstruction, modeling & analysis of Halobacterium salinarum R-1 metabolism. , 2008, Molecular bioSystems.

[64]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[65]  Patrick Lambrix,et al.  Representations of molecular pathways: an evaluation of SBML, PSI MI and BioPAX , 2005, Bioinform..

[66]  Robert Giegerich,et al.  PathFinder: reconstruction and dynamic visualization of metabolic pathways , 2002, Bioinform..

[67]  Chunhui Li,et al.  Exploring the diversity of complex metabolic networks , 2005, Bioinform..

[68]  Nikos Kyrpides,et al.  The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide , 2005, Nucleic Acids Res..

[69]  BMC Bioinformatics , 2005 .

[70]  J. Liao,et al.  Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. , 2008, Metabolic engineering.

[71]  J. Nielsen,et al.  In silico genome‐scale reconstruction and validation of the Corynebacterium glutamicum metabolic network , 2009, Biotechnology and bioengineering.

[72]  Antje Chang,et al.  BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009 , 2008, Nucleic Acids Res..

[73]  Costas D Maranas,et al.  OptStrain: a computational framework for redesign of microbial production systems. , 2004, Genome research.

[74]  Daylight Theory Manual , 2011 .

[75]  David Weininger,et al.  SMILES. 2. Algorithm for generation of unique SMILES notation , 1989, J. Chem. Inf. Comput. Sci..

[76]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[77]  Lincoln Stein,et al.  Reactome knowledgebase of human biological pathways and processes , 2008, Nucleic Acids Res..

[78]  Vincent Schächter,et al.  Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data , 2008, BMC Systems Biology.

[79]  J. Y. Yen,et al.  Finding the K Shortest Loopless Paths in a Network , 2007 .

[80]  J. Y. Yen Finding the K Shortest Loopless Paths in a Network , 1971 .

[81]  Jochen Förster,et al.  Modeling Lactococcus lactis using a genome-scale flux model , 2005, BMC Microbiology.

[82]  V. Hatzimanikatis,et al.  Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3‐hydroxypropanoate , 2010, Biotechnology and bioengineering.

[83]  U. Sauer,et al.  Metabolic functions of duplicate genes in Saccharomyces cerevisiae. , 2005, Genome research.

[84]  Gerbert A. Jansen,et al.  Critical assessment of human metabolic pathway databases: a stepping stone for future integration , 2011, BMC Systems Biology.

[85]  G. Church,et al.  Genome-Scale Metabolic Model of Helicobacter pylori 26695 , 2002, Journal of bacteriology.

[86]  L. Fan,et al.  Complementary identification of multiple flux distributions and multiple metabolic pathways. , 2005, Metabolic engineering.

[87]  B. Palsson,et al.  Genome-scale Reconstruction of Metabolic Network in Bacillus subtilis Based on High-throughput Phenotyping and Gene Essentiality Data* , 2007, Journal of Biological Chemistry.