A Theoretical and Experimental Study on Modulation-Format-Independent Wavelength Conversion

Modern optical networks are adopting advanced modulation formats. Future dynamic optical networks will benefit from all-optical wavelength conversion and signal regeneration techniques in support of multiple modulation formats. This paper presents a concept for a modulation-format-independent wavelength conversion technique based on an optical hybrid and an in-phase/quadrature (IQ) wavelength converter. This technique has the potential for wavelength conversion and signal regeneration of multiple modulation formats. This paper also discusses the signal distortions and noises in the semiconductor optical amplifier based IQ wavelength converter. A proof-of-principle experiment shows the wavelength conversion results of multiple modulation formats. Further, this paper presents the signal regeneration of a return-to-zero quadrature-phase-shifted-keying signal through simulation.

[1]  T. Durhuus,et al.  All optical wavelength conversion by SOA's in a Mach-Zehnder configuration , 1994, IEEE Photonics Technology Letters.

[2]  E. Ciaramella,et al.  WDM-POLSK Transmission Systems by Using Semiconductor Optical Amplifiers , 2006, Journal of Lightwave Technology.

[3]  M. Izutsu,et al.  Integrated optical SSB modulator/frequency shifter , 1981 .

[4]  S. Yoo Wavelength conversion technologies for WDM network applications , 1996 .

[5]  M. Lipson,et al.  Signal regeneration using low-power four-wave mixing on silicon chip , 2008 .

[6]  K. Kitayama,et al.  All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters. , 2007, Optics express.

[7]  Zhong Pan,et al.  High-Performance Optical 3R Regeneration for Scalable Fiber Transmission System Applications , 2007, Journal of Lightwave Technology.

[8]  W. Freude,et al.  Cascadability and Regenerative Properties of SOA All-Optical DPSK Wavelength Converters , 2006, IEEE Photonics Technology Letters.

[9]  Martin M. Fejer,et al.  1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO 3 waveguides , 1999 .

[10]  C. Schubert,et al.  320 Gbit/s DQPSK All-Optical Wavelength Conversion using Four Wave Mixing , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[11]  I. Brener,et al.  1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides , 1999, IEEE Photonics Technology Letters.

[12]  A.H. Gnauck,et al.  Optical phase-shift-keyed transmission , 2005, Journal of Lightwave Technology.

[13]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[14]  Junya Kurumida,et al.  Modulation-format-independent wavelength conversion , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[15]  Kazuro Kikuchi,et al.  Coherent Optical Fiber Communications , 1988 .

[16]  N. Storkfelt,et al.  Measurement of carrier lifetime and linewidth enhancement factor for 1.5- mu m ridge-waveguide laser amplifier , 1991, IEEE Photonics Technology Letters.

[17]  T. Okoshi,et al.  Effect of frequency offset in DPSK phase-diversity optical receivers , 1988 .

[18]  Yasuhiko Arakawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers , 2003, Proceedings of the IEEE.

[19]  M. Connelly Wideband semiconductor optical amplifier steady-state numerical model , 2001 .

[20]  R. Jones A New Calculus for the Treatment of Optical Systems. IV. , 1942 .

[21]  S. J. B. Yoo,et al.  Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding , 1996 .

[22]  Gee-Kung Chang,et al.  Polarization insensitive wavelength conversion for 4x112Gbit/s polarization multiplexing RZ-QPSK signals. , 2008, Optics express.

[23]  V. Lal,et al.  Widely tunable monolithically integrated all-optical wavelength converters in InP , 2005, Journal of Lightwave Technology.