Effect of capping procedure on quantum dot morphology: Implications on optical properties and efficiency of InAs/GaAs quantum dot solar cells

Abstract InAs/GaAs quantum dot solar cell structures have been grown by metal organic vapor phase epitaxy, using partial capping of the quantum dots plus a subsequent thermal anneal. The optical characteristics of the InAs quantum dot layers have been studied as a function of the GaAs capping layer thickness and annealing temperature. We observe that a thinner capping layer and a higher annealing temperature result in lower non-radiative defect density and in improved quantum dot size homogeneity, leading to intense and sharp photoluminescence emission at low temperatures. We use an effective mass approximation model to correlate the photoluminescence emission characteristics to the quantum dot composition and dimensions. The resulting InAs/GaAs intermediate band solar cells show the best performance for the case of a 3 nm thick capping layer and annealing at 700 °C.

[1]  Ray Murray,et al.  Optical properties of bilayer InAs/GaAs quantum dot structures: Influence of strain and surface morphology , 2002 .

[2]  Axel Lorke,et al.  Intermixing and shape changes during the formation of InAs self-assembled quantum dots , 1997 .

[3]  O. Schmidt,et al.  Shape evolution of InAs quantum dots during overgrowth , 2003 .

[4]  Y. Okada,et al.  Demonstration of the operation principles of intermediate band solar cells at room temperature , 2016 .

[5]  M. Hopkinson,et al.  EXCITED STATES AND SELECTION RULES IN SELF-ASSEMBLED INAS/GAAS QUANTUM DOTS , 1999 .

[6]  Christopher G. Bailey,et al.  Open-Circuit Voltage Improvement of InAs/GaAs Quantum-Dot Solar Cells Using Reduced InAs Coverage , 2011, IEEE Journal of Photovoltaics.

[7]  Antonio Luque,et al.  The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept , 2010, Advanced materials.

[8]  Shu-Shen Li,et al.  Quantum-confined Stark effects of InAs/GaAs self-assembled quantum dot , 2000 .

[9]  J. Jasinski,et al.  Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap , 2001 .

[10]  V. M. Andreev,et al.  Increasing the quantum efficiency of InAs/GaAs QD arrays for solar cells grown by MOVPE without using strain‐balance technology , 2016 .

[11]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[12]  Huiyun Liu,et al.  InAs/InGaP quantum dot solar cells with an AlGaAs interlayer , 2016 .

[13]  Diana L. Huffaker,et al.  Effect of strain-compensation in stacked 1.3μm InAs∕GaAs quantum dot active regions grown by metalorganic chemical vapor deposition , 2004 .

[14]  A. B. Cristóbal,et al.  Six not so easy pieces in intermediate band solar cell research , 2013, Photonics West - Optoelectronic Materials and Devices.

[15]  Yasuhiko Arakawa,et al.  Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage , 2010 .

[16]  Z. R. Wasilewski,et al.  Size and shape engineering of vertically stacked self-assembled quantum dots , 1999 .

[17]  M. Slocum,et al.  OMVPE of InAs quantum dots on an InGaP surface , 2013 .

[18]  Christopher G. Bailey,et al.  Effect of strain compensation on quantum dot enhanced GaAs solar cells , 2008 .

[19]  Antonio Luque,et al.  Wide-Bandgap InAs/InGaP Quantum-Dot Intermediate Band Solar Cells , 2015, IEEE Journal of Photovoltaics.

[20]  F. Ponce,et al.  Correlation between size distribution and luminescence properties of spool-shaped InAs quantum dots , 2017 .

[21]  F. Ponce,et al.  InAs quantum dot growth on AlxGa1−xAs by metalorganic vapor phase epitaxy for intermediate band solar cells , 2014 .

[22]  Antonio Luque,et al.  Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell , 2010 .

[23]  F. Ponce,et al.  Improved optical properties of InAs quantum dots for intermediate band solar cells by suppression of misfit strain relaxation , 2016 .

[24]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[25]  Antonio Luque,et al.  Understanding intermediate-band solar cells , 2012, Nature Photonics.

[26]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[27]  H. Eisele,et al.  Change of InAs/GaAs quantum dot shape and composition during capping , 2008 .

[28]  P. G. Piva,et al.  Manipulating the energy levels of semiconductor quantum dots , 1999 .

[29]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.