Effect of capping procedure on quantum dot morphology: Implications on optical properties and efficiency of InAs/GaAs quantum dot solar cells
暂无分享,去创建一个
Fernando Ponce | Hongen Xie | Mauricio P. Pires | Daniel Neves Micha | Patricia L. Souza | D. N. Micha | F. Ponce | Po-Yi Su | E. Weiner | R. Jakomin | M. P. Pires | P. L. Souza | H. Xie | L. D. Pinto | R. Jakomin | E. C. Weiner | Po Yi Su | M. Pires | L. Pinto | D. Micha
[1] Ray Murray,et al. Optical properties of bilayer InAs/GaAs quantum dot structures: Influence of strain and surface morphology , 2002 .
[2] Axel Lorke,et al. Intermixing and shape changes during the formation of InAs self-assembled quantum dots , 1997 .
[3] O. Schmidt,et al. Shape evolution of InAs quantum dots during overgrowth , 2003 .
[4] Y. Okada,et al. Demonstration of the operation principles of intermediate band solar cells at room temperature , 2016 .
[5] M. Hopkinson,et al. EXCITED STATES AND SELECTION RULES IN SELF-ASSEMBLED INAS/GAAS QUANTUM DOTS , 1999 .
[6] Christopher G. Bailey,et al. Open-Circuit Voltage Improvement of InAs/GaAs Quantum-Dot Solar Cells Using Reduced InAs Coverage , 2011, IEEE Journal of Photovoltaics.
[7] Antonio Luque,et al. The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept , 2010, Advanced materials.
[8] Shu-Shen Li,et al. Quantum-confined Stark effects of InAs/GaAs self-assembled quantum dot , 2000 .
[9] J. Jasinski,et al. Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap , 2001 .
[10] V. M. Andreev,et al. Increasing the quantum efficiency of InAs/GaAs QD arrays for solar cells grown by MOVPE without using strain‐balance technology , 2016 .
[11] Nikolai N. Ledentsov,et al. Quantum dot heterostructures , 1999 .
[12] Huiyun Liu,et al. InAs/InGaP quantum dot solar cells with an AlGaAs interlayer , 2016 .
[13] Diana L. Huffaker,et al. Effect of strain-compensation in stacked 1.3μm InAs∕GaAs quantum dot active regions grown by metalorganic chemical vapor deposition , 2004 .
[14] A. B. Cristóbal,et al. Six not so easy pieces in intermediate band solar cell research , 2013, Photonics West - Optoelectronic Materials and Devices.
[15] Yasuhiko Arakawa,et al. Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage , 2010 .
[16] Z. R. Wasilewski,et al. Size and shape engineering of vertically stacked self-assembled quantum dots , 1999 .
[17] M. Slocum,et al. OMVPE of InAs quantum dots on an InGaP surface , 2013 .
[18] Christopher G. Bailey,et al. Effect of strain compensation on quantum dot enhanced GaAs solar cells , 2008 .
[19] Antonio Luque,et al. Wide-Bandgap InAs/InGaP Quantum-Dot Intermediate Band Solar Cells , 2015, IEEE Journal of Photovoltaics.
[20] F. Ponce,et al. Correlation between size distribution and luminescence properties of spool-shaped InAs quantum dots , 2017 .
[21] F. Ponce,et al. InAs quantum dot growth on AlxGa1−xAs by metalorganic vapor phase epitaxy for intermediate band solar cells , 2014 .
[22] Antonio Luque,et al. Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell , 2010 .
[23] F. Ponce,et al. Improved optical properties of InAs quantum dots for intermediate band solar cells by suppression of misfit strain relaxation , 2016 .
[24] A. Luque,et al. Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .
[25] Antonio Luque,et al. Understanding intermediate-band solar cells , 2012, Nature Photonics.
[26] H. Queisser,et al. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .
[27] H. Eisele,et al. Change of InAs/GaAs quantum dot shape and composition during capping , 2008 .
[28] P. G. Piva,et al. Manipulating the energy levels of semiconductor quantum dots , 1999 .
[29] P. Vogl,et al. nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.