On the identifiability of metabolic network models

A major problem for the identification of metabolic network models is parameter identifiability, that is, the possibility to unambiguously infer the parameter values from the data. Identifiability problems may be due to the structure of the model, in particular implicit dependencies between the parameters, or to limitations in the quantity and quality of the available data. We address the detection and resolution of identifiability problems for a class of pseudo-linear models of metabolism, so-called linlog models. Linlog models have the advantage that parameter estimation reduces to linear or orthogonal regression, which facilitates the analysis of identifiability. We develop precise definitions of structural and practical identifiability, and clarify the fundamental relations between these concepts. In addition, we use singular value decomposition to detect identifiability problems and reduce the model to an identifiable approximation by a principal component analysis approach. The criterion is adapted to real data, which are frequently scarce, incomplete, and noisy. The test of the criterion on a model with simulated data shows that it is capable of correctly identifying the principal components of the data vector. The application to a state-of-the-art dataset on central carbon metabolism in Escherichia coli yields the surprising result that only $$4$$ out of $$31$$ reactions, and $$37$$ out of $$100$$ parameters, are identifiable. This underlines the practical importance of identifiability analysis and model reduction in the modeling of large-scale metabolic networks. Although our approach has been developed in the context of linlog models, it carries over to other pseudo-linear models, such as generalized mass-action (power-law) models. Moreover, it provides useful hints for the identifiability analysis of more general classes of nonlinear models of metabolism.

[1]  M. Savageau Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology , 1976 .

[2]  C. Cobelli,et al.  Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. , 1980, The American journal of physiology.

[3]  H. Kutchai,et al.  Regulation of glycolysis in rat aorta. , 1984, The American journal of physiology.

[4]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[5]  C Reder,et al.  Metabolic control theory: a structural approach. , 1988, Journal of theoretical biology.

[6]  K R Godfrey,et al.  Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. , 1990, Mathematical biosciences.

[7]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[8]  J. Liao,et al.  Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients. , 1992, The Biochemical journal.

[9]  Ricardo D. Fierro,et al.  The Total Least Squares Problem: Computational Aspects and Analysis (S. Van Huffel and J. Vandewalle) , 1993, SIAM Rev..

[10]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[11]  Eberhard O. Voit,et al.  Flux-based estimation of parameters in S-systems , 1996 .

[12]  J. Bailey,et al.  Effects of spatiotemporal variations on metabolic control: approximate analysis using (log)linear kinetic models. , 1997, Biotechnology and bioengineering.

[13]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[14]  I. Jolliffe Principal Component Analysis , 2002 .

[15]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[16]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[17]  Xiaohua Xia,et al.  Identifiability of nonlinear systems with application to HIV/AIDS models , 2003, IEEE Trans. Autom. Control..

[18]  J. Heijnen,et al.  Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. , 2003, Metabolic engineering.

[19]  J. Heijnen Approximative kinetic formats used in metabolic network modeling , 2005, Biotechnology and bioengineering.

[20]  E. Voit,et al.  Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study. , 2006, Systems biology.

[21]  Andreas Kremling,et al.  A Quantitative Approach to Catabolite Repression in Escherichia coli* , 2006, Journal of Biological Chemistry.

[22]  Ana Rute Neves,et al.  The intricate side of systems biology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Gaudenz Danuser,et al.  Linking data to models: data regression , 2006, Nature Reviews Molecular Cell Biology.

[24]  E. Klipp,et al.  Bringing metabolic networks to life: convenience rate law and thermodynamic constraints , 2006, Theoretical Biology and Medical Modelling.

[25]  E. Crampin SYSTEM IDENTIFICATION CHALLENGES FROM SYSTEMS BIOLOGY , 2006 .

[26]  Maria Pia Saccomani,et al.  DAISY: A new software tool to test global identifiability of biological and physiological systems , 2007, Comput. Methods Programs Biomed..

[27]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[28]  Pei Yee Ho,et al.  Multiple High-Throughput Analyses Monitor the Response of E. coli to Perturbations , 2007, Science.

[29]  Matthias Reuss,et al.  Topology of the global regulatory network of carbon limitation in Escherichia coli. , 2007, Journal of biotechnology.

[30]  Jens Timmer,et al.  Dynamical modeling and multi-experiment fitting with PottersWheel , 2008, Bioinform..

[31]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[32]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[33]  J. Rabinowitz,et al.  Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli , 2009, Nature chemical biology.

[34]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[35]  I. E. Nikerel,et al.  Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics. , 2009, Metabolic engineering.

[36]  William W. Chen,et al.  Classic and contemporary approaches to modeling biochemical reactions. , 2010, Genes & development.

[37]  J. Nemcová Structural identifiability of polynomial and rational systems. , 2008, Mathematical biosciences.

[38]  Judith B. Zaugg,et al.  Bacterial adaptation through distributed sensing of metabolic fluxes , 2010, Molecular systems biology.

[39]  Rudiyanto Gunawan,et al.  Parameter identifiability of power-law biochemical system models. , 2010, Journal of biotechnology.

[40]  Eva Balsa-Canto,et al.  Bioinformatics Applications Note Systems Biology Genssi: a Software Toolbox for Structural Identifiability Analysis of Biological Models , 2022 .

[41]  Eugenio Cinquemani,et al.  Identification of metabolic network models from incomplete high-throughput datasets , 2011, Bioinform..

[42]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[43]  J. Timmer,et al.  Addressing parameter identifiability by model-based experimentation. , 2011, IET systems biology.

[44]  Eugenio Cinquemani,et al.  Structural and practical identifiability of approximate metabolic network models , 2012 .