Solvent nature effect in preparation of perovskites by flame-pyrolysis: 1. Carboxylic acids

Abstract The effect of a series of carboxylic acids (C2–C8), as solvents for the preparation by flame spray pyrolysis of LaCoO3 catalyst for the flameless combustion of methane, has been investigated. Acetic acid showed to be unsatisfactory from several points of view: low phase purity of the catalyst, higher amount of unburnt carbonaceous residua, lower catalytic activity and low thermal stability. By increasing the carbon chain length of the solvent, the consequent increase of flame temperature led to an increase of crystal phase purity and of particle size and to a decrease of specific surface area of the catalyst. Catalytic activity showed only marginally affected by the last parameter, phase purity seeming more important. Thermal resistance showed directly related to flame temperature, i.e. to the combustion enthalpy of the solvent, but a relatively high amount of residual organic matter can negatively affect this property.

[1]  T. Johannessen,et al.  One-Step Flame Synthesis of an Active Pt/TiO2 Catalyst for SO2 Oxidation—A Possible Alternative to Traditional Methods for Parallel Screening , 2002 .

[2]  G. Kauffman Johann Wolfgang Döbereiner’s Feuerzeug , 1999, Platinum Metals Review.

[3]  L. Bonoldi,et al.  Effect of preparation parameters on SrTiO3±δ catalyst for the flameless combustion of methane , 2005 .

[4]  D. Ferri,et al.  Methane combustion on some perovskite-like mixed oxides , 1998 .

[5]  G. Migliavacca,et al.  Preparation by flame spray pyrolysis of ABO3±δ catalysts for the flameless combustion of methane , 2006 .

[6]  I. Rossetti,et al.  Sr1–xAgxTiO3±δ (x=0, 0.1) perovskite-structured catalysts for the flameless combustion of methane , 2005 .

[7]  Sotiris E. Pratsinis,et al.  Flame Aerosol Synthesis of Vanadia–Titania Nanoparticles: Structural and Catalytic Properties in the Selective Catalytic Reduction of NO by NH3 , 2001 .

[8]  I. Rossetti,et al.  Catalytic flameless combustion of methane over perovskites prepared by flame–hydrolysis , 2001 .

[9]  M. Islam,et al.  Oxygen Diffusion in LaMnO3and LaCoO3Perovskite-Type Oxides: A Molecular Dynamics Study , 1996 .

[10]  Sano,et al.  A low-operating-temperature solid oxide fuel cell in hydrocarbon-Air mixtures , 2000, Science.

[11]  L. Mädler,et al.  Bismuth Oxide Nanoparticles by Flame Spray Pyrolysis , 2004 .

[12]  S. Järås,et al.  Catalytic Materials for High-Temperature Combustion , 1993 .

[13]  S. Pratsinis,et al.  Growth of zirconia particles made by flame spray pyrolysis , 2004 .

[14]  L. Marchetti,et al.  Catalytic combustion of methane over perovskites , 1998 .

[15]  Sotiris E. Pratsinis,et al.  Zirconia Nanoparticles Made in Spray Flames at High Production Rates , 2004 .

[16]  Abhaya K. Datye,et al.  CATALYTIC COMBUSTION OF METHANE OVER PALLADIUM-BASED CATALYSTS , 2002 .

[17]  W. Stark,et al.  Flame synthesis of nanocrystalline ceria-zirconia: effect of carrier liquid. , 2003, Chemical communications.

[18]  S. Pratsinis,et al.  Flame-made Pd/La2O3/Al2O3 nanoparticles: thermal stability and catalytic behavior in methane combustion , 2005 .

[19]  T. Morse,et al.  A Novel Aerosol Combustion Process for the High Rate Formation of Nanoscale Oxide Particles , 2001 .

[20]  P. Pollesel,et al.  TPD-TPR-MS mechanistic study of the ammoxidation of 2-methylpyrazine over Sb-V-Mn-O catalyst , 1991 .

[21]  A. Zaopo,et al.  Effect of preparation method on activity and stability of LaMnO3 and LaCoO3 catalysts for the flameless combustion of methane , 2005 .

[22]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[23]  J. Mäkelä,et al.  Generation of metal and metal oxide nanoparticles by liquid flame spray process , 2004 .

[24]  Michel Primet,et al.  Complete oxidation of methane at low temperature over noble metal based catalysts: a review , 2002 .

[25]  Lutz Mädler,et al.  Controlled synthesis of nanostructured particles by flame spray pyrolysis , 2002 .

[26]  W. Stark,et al.  Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation , 2003 .

[27]  Dae Jong Seo,et al.  Formation of ZnO, MgO and NiO Nanoparticles from Aqueous Droplets in Flame Reactor , 2003 .

[28]  M. A. Peña,et al.  Chemical structures and performance of perovskite oxides. , 2001, Chemical reviews.

[29]  W. Stark,et al.  Criteria for Flame‐Spray Synthesis of Hollow, Shell‐Like, or Inhomogeneous Oxides , 2005 .

[30]  I. Rossetti,et al.  Flame-spray pyrolysis preparation of perovskites for methane catalytic combustion , 2005 .

[31]  Y. Shimizu,et al.  Sol–Gel Synthesis of Perovskite‐Type Lanthanum Manganite Thin Films and Fine Powders Using Metal Acetylacetonate and Poly(vinyl alcohol) , 2005 .

[32]  I. Metcalfe,et al.  Evaluation of perovskite anodes for the complete oxidation of dry methane in solid oxide fuel cells , 1994 .

[33]  M. Blaauw,et al.  Catalytic combustion concept for gas turbines , 1999 .

[34]  I. Rossetti,et al.  Perovskite catalysts for the catalytic flameless combustion of methane , 2000 .

[35]  S. Pratsinis,et al.  Evolution of the Morphology of Zinc Oxide/Silica Particles Made by Spray Combustion , 2004 .

[36]  Gabriele Centi,et al.  Supported palladium catalysts in environmental catalytic technologies for gaseous emissions , 2001 .

[37]  Richard M. Laine,et al.  Liquid-Feed Flame Spray Pyrolysis of Nanopowders in the Alumina-Titania System , 2004 .

[38]  W. Stark,et al.  Flame-made nanocrystalline ceria/zirconia doped with alumina or silica: structural properties and enhanced oxygen exchange capacity , 2003 .