Sensitivity of SAR Tomography to the Phenological Cycle of Agricultural Crops at X-, C-, and L-band

Understanding the impact of soil and plant parameter changes in agriculture on Synthetic Aperture Radar (SAR) measurements is of great interest when it comes to monitor the temporal evolution of agricultural crops by means of SAR. In this regard, specific transitions between phenological stages in corn, barley, and wheat have been identified associated to certain dielectric and geometric changes, based on a time series of fully polarimetric multibaseline SAR data and in situ measurements. The data have been acquired in the frame of DLR's CROPEX campaign on six dates between May and July in 2014. The experiments reported in this paper address the sensitivity of X-, C-, and L-band to phenological transitions exploiting the availability of multiple baselines on each acquisition date. The application of tomographic techniques enables the estimation of the three-dimensional (3-D) backscatter distribution and the separation of ground and volume scattering components. Tomographic parameters have been derived at different frequencies, namely the center of mass of the profiles of the total and of the volume-only 3-D backscatter, and the ground and volume powers. Their sensitivity and ability to detect changes occurring on the ground and in the vegetation volume have been evaluated focusing on the added value provided by the 3-D resolution at the different frequencies and polarizations available.

[1]  Erich Meier,et al.  3-D Time-Domain SAR Imaging of a Forest Using Airborne Multibaseline Data at L- and P-Bands , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Irena Hajnsek,et al.  A Multibaseline Pol-InSAR Inversion Scheme for Crop Parameter Estimation at Different Frequencies , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Laurent Ferro-Famil,et al.  High-Resolution SAR Tomography using full rank Polarimetric spectral estimators , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[4]  Fawwaz Ulaby,et al.  Microwave Attenuation Properties of Vegetation Canopies , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[5]  S. Cloude Polarisation: Applications in Remote Sensing , 2009 .

[6]  Ballester Berman,et al.  Retrieval of biophysical parameters of agricultural crops using polarimetric sar interferometry , 2011 .

[7]  Irena Hajnsek,et al.  On the potential of Polarimetric SAR Interferometry to characterize the biomass, moisture and structure of agricultural crops at L-, C- and X-Bands , 2018 .

[8]  Konstantinos Papathanassiou,et al.  On the Estimation of Ground and Volume Polarimetric Covariances in Forest Scenarios With SAR Tomography , 2017, IEEE Geoscience and Remote Sensing Letters.

[9]  Irena Hajnsek,et al.  On the Separation of Ground and Volume Scattering Using Multibaseline SAR Data , 2017, IEEE Geoscience and Remote Sensing Letters.

[10]  H. Bleiholder,et al.  The BBCH system to coding the phenological growth stages of plants - history and publications. , 2009 .

[11]  Shane Cloude Dual-Baseline Coherence Tomography , 2007, IEEE Geoscience and Remote Sensing Letters.

[12]  Kostas Papathanassiou,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[13]  Irena Hajnsek,et al.  3-D Scattering Characterization of Agricultural Crops at C-Band Using SAR Tomography , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Irena Hajnsek,et al.  Comparing Performances of Crop Height Inversion Schemes From Multifrequency Pol-InSAR Data , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[15]  Stefano Tebaldini,et al.  Algebraic Synthesis of Forest Scenarios From Multibaseline PolInSAR Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  B. Brisco,et al.  The application of C-band polarimetric SAR for agriculture: a review , 2004 .

[17]  Juan M. Lopez-Sanchez,et al.  Potentials of polarimetric SAR interferometry for agriculture monitoring , 2009 .

[18]  Juan M. Lopez-Sanchez,et al.  Indoor wide-band polarimetric measurements on maize plants: a study of the differential extinction coefficient , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Henning Skriver,et al.  Multitemporal C- and L-band polarimetric signatures of crops , 1999, IEEE Trans. Geosci. Remote. Sens..

[20]  Heather McNairn,et al.  RADARSAT-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[21]  Heather McNairn,et al.  Radar Remote Sensing of Agricultural Canopies: A Review , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[22]  Jordi J. Mallorquí,et al.  Refined estimation of time-varying baseline errors in airborne SAR interferometry , 2006, IEEE Geoscience and Remote Sensing Letters.

[23]  Shaun Quegan,et al.  High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval , 2003, IEEE Trans. Geosci. Remote. Sens..

[24]  Fernando Vicente-Guijalba,et al.  A Complete Procedure for Crop Phenology Estimation With PolSAR Data Based on the Complex Wishart Classifier , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Konstantinos Papathanassiou,et al.  A Two-Step Phase Calibration Method for Tomographic Applications with Airborne SAR Data , 2014 .

[26]  Simonetta Paloscia,et al.  A summary of experimental results to assess the contribution of SAR for mapping vegetation biomass and soil moisture , 2002 .

[27]  Alvin R. Womac,et al.  Mass and moisture distribution in aboveground components of standing corn plants. , 2006 .

[28]  Irena Hajnsek,et al.  First Multi-Frequency Investigation of SAR Tomography for Vertical Structure of Agricultural Crops , 2014 .

[29]  Fabrizio Lombardini,et al.  Experiments of Tomography-based SAR Techniques with P-band Polarimetric Data , 2009 .

[30]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[31]  A. Sieber,et al.  Indoor Polarimetric Radar Measurements On Vegetation Samples At L, S, c aNd x band , 2000 .

[32]  Chris Varekamp,et al.  Observation of tropical rain forest trees by airborne high-resolution interferometric radar , 2000, IEEE Trans. Geosci. Remote. Sens..

[33]  M. T. Svendsen,et al.  Crop classification by polarimetric SAR , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[34]  Björn E. Ottersten,et al.  Covariance Matching Estimation Techniques for Array Signal Processing Applications , 1998, Digit. Signal Process..