Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties

This paper considers the problems of robust stability and stabilization for a class of fractional-order linear time-invariant systems with convex polytopic uncertainties. The stability condition of the fractional-order linear time-invariant systems without uncertainties is extended by introducing a new matrix variable. The new extended stability condition is linear with respect to the new matrix variable and exhibits a kind of decoupling between the positive definite matrix and the system matrix. Based on the new extended stability condition, sufficient conditions for the above robust stability and stabilization problems are established in terms of linear matrix inequalities by using parameter-dependent positive definite matrices. Finally, numerical examples are provided to illustrate the proposed results.

[1]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[2]  Takao Watanabe,et al.  A unified algebraic approach to linear control design: Robert E. Skelton, Tetsuya Iwasaki and Karolos M. Grigoriadis; Copyright Taylor & Francis, 1998, ISBN: 0-7484-0592-5 , 2003, Autom..

[3]  Zhuang Jiao,et al.  Stability analysis of fractional-order systems with double noncommensurate orders for matrix case , 2011 .

[4]  S. Manabe A Suggestion of Fractional-Order Controller for Flexible Spacecraft Attitude Control , 2002 .

[5]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[6]  Y. Chen,et al.  A comparative introduction of four fractional order controllers , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[7]  M. Nakagawa,et al.  Basic Characteristics of a Fractance Device , 1992 .

[8]  B. d'Andrea-Novel,et al.  Observer-based controllers for fractional differential systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[9]  Yangquan Chen,et al.  Necessary and sufficient stability condition of fractional-order interval linear systems , 2008, Autom..

[10]  Manuel Ortigueira,et al.  Special Issue on Fractional signal Processing and applications , 2003 .

[11]  G. Zhai,et al.  Quadratic stabilizability of switched linear systems with polytopic uncertainties , 2003 .

[12]  Qigui Yang,et al.  The fBm-driven Ornstein-Uhlenbeck process: Probability density function and anomalous diffusion , 2012 .

[13]  S. Westerlund,et al.  Capacitor theory , 1994 .

[14]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[15]  Chyi Hwang,et al.  A numerical algorithm for stability testing of fractional delay systems , 2006, Autom..

[16]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[17]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[18]  Manuel Duarte Ortigueira,et al.  Introduction to fractional linear systems. Part 1. Continuous-time case , 2000 .

[19]  R. Feynman,et al.  RECENT APPLICATIONS OF FRACTIONAL CALCULUS TO SCIENCE AND ENGINEERING , 2003 .

[20]  Mohammad Saleh Tavazoei,et al.  A note on the stability of fractional order systems , 2009, Math. Comput. Simul..

[21]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[22]  Nusret Tan,et al.  Robust stability analysis of fractional order interval polynomials. , 2009, ISA transactions.

[23]  Pedro Luis Dias Peres,et al.  An LMI condition for the robust stability of uncertain continuous-time linear systems , 2002, IEEE Trans. Autom. Control..

[24]  Chun-Hsiung Fang,et al.  An improved LMI-based D-stability condition for polytopic uncertain systems , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[25]  A. Michel,et al.  Stability of viscoelastic control systems , 1987, 26th IEEE Conference on Decision and Control.

[26]  Jonathan R. Partington,et al.  Analysis of fractional delay systems of retarded and neutral type , 2002, Autom..

[27]  Yangquan Chen,et al.  Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality , 2007, Appl. Math. Comput..

[28]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[29]  I. Podlubny Fractional-Order Systems and -Controllers , 1999 .

[30]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[31]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[32]  YangQuan Chen,et al.  Impulse response of a generalized fractional second order filter , 2011, ArXiv.

[33]  Mathieu Moze,et al.  LMI stability conditions for fractional order systems , 2010, Comput. Math. Appl..