Surface quality and composition dependence of absolute quantum photoyield of CVD diamond films

[1]  Amos Breskin,et al.  Absolute quantum photoyield of diamond thin films: Dependence on surface preparation and stability under ambient conditions , 1998 .

[2]  Jingbiao Cui,et al.  Electron Affinity of the Bare and Hydrogen Covered Single Crystal Diamond (111) Surface , 1998 .

[3]  Richard B. Jackman,et al.  High carrier mobility in polycrystalline thin film diamond , 1998 .

[4]  M. Stutzmann,et al.  Photoconductivity of undoped, nitrogen- and boron-doped CVD- and synthetic diamond , 1998 .

[5]  L. Ley,et al.  Photoelectron yield spectroscopy on negative electron affinity diamond surfaces: A contactless unipolar transport experiment , 1998 .

[6]  P. May,et al.  The Effect of Diamond Surface Termination Species upon Field Emission Properties , 1998 .

[7]  R. Nemanich,et al.  Electron emission from metal-diamond (100), (111) and (110) interfaces , 1998 .

[8]  L. Schlapbach,et al.  Photoelectron emission from the negative electron affinity caesiated natural diamond (100) surface , 1998 .

[9]  M. J. Rutter,et al.  Ab initio calculation of electron affinities of diamond surfaces , 1998 .

[10]  K. Miyata,et al.  Influence of surface treatment and dopant concentration on field emission characteristics of boron-doped diamond thin films , 1997 .

[11]  S. Koizumi,et al.  Electron emission from the pyramidal-shaped diamond after hydrogen and oxygen surface treatments , 1997 .

[12]  Amos Breskin,et al.  Absolute photoyield from chemical vapor-deposited diamond and diamond-like carbon films in the UV , 1997 .

[13]  H. Shechter,et al.  Thermal-programmed desorption (TPD) of deuterium from Di(111) surface: presence of two adsorption states , 1997 .

[14]  R. Kalish,et al.  Optical and photoemission studies of DLC films prepared with a systematic variation of the sp3:sp2 composition , 1997 .

[15]  J. Butler,et al.  Negative electron affinity observed in boron‐doped p‐type diamond films by scanning field emission spectroscopy , 1996 .

[16]  M. Geis,et al.  Comparison of electric field emission from nitrogen‐doped, type Ib diamond, and boron‐doped diamond , 1996 .

[17]  Dayton,et al.  Negative-electron-affinity effect on the surface of chemical-vapor-deposited diamond polycrystalline films. , 1996, Physical review. B, Condensed matter.

[18]  Y. Mori,et al.  Structural Study of Chemical-Vapor-Deposited Diamond Surface by High-Resolution Electron Microscopy , 1995 .

[19]  Nemanich,et al.  Influence of interfacial hydrogen and oxygen on the Schottky barrier height of nickel on (111) and (100) diamond surfaces. , 1994, Physical review. B, Condensed matter.

[20]  William B. White,et al.  Characterization of diamond films by Raman spectroscopy , 1989 .

[21]  J. Lekner,et al.  Extraction of the surface thickness of liquid argon near its triple point from the data of Shih and Uang , 1979 .

[22]  D. G. Fisher,et al.  The application of semiconductors with negative electron affinity surfaces to electron emission devices , 1974 .

[23]  R. Nemanich,et al.  Characterization of copper-diamond (100), (111), and (110) interfaces: Electron affinity and Schottky barrier , 1998 .

[24]  D. Edwards,et al.  Cubic Carbon (Diamond) , 1997 .

[25]  B. Pate Surfaces and Interfaces of Diamond , 1995 .

[26]  D. Kania,et al.  Diamond : electronic properties and applications , 1995 .

[27]  Yoichiro Sato,et al.  Vapour-phase oxidation of diamond surfaces in O2 studied by diffuse reflectance Fourier-transform infrared and temperture-programmed desorption spectroscopy , 1993 .