A Kolmogorov-Smirnov test for the molecular clock based on Bayesian ensembles of phylogenies
暂无分享,去创建一个
Fernando Antoneli | Fernando M. Passos | F. Antoneli | M. Briones | Marcelo R S Briones | Fernando M Passos | Luciano R Lopes | L. R. Lopes
[1] J H Gillespie,et al. Natural selection and the molecular clock. , 1986, Molecular biology and evolution.
[2] D. Bryant,et al. A general comparison of relaxed molecular clock models. , 2007, Molecular biology and evolution.
[3] Herold Dehling,et al. Empirical Process Techniques for Dependent Data , 2002 .
[4] J H Gillespie,et al. The molecular clock may be an episodic clock. , 1984, Proceedings of the National Academy of Sciences of the United States of America.
[5] F. Tajima,et al. Simple methods for testing the molecular evolutionary clock hypothesis. , 1993, Genetics.
[6] J. M. Hammersley,et al. The “Effective” Number of Independent Observations in an Autocorrelated Time Series , 1946 .
[7] Rodrigo Lopez,et al. Clustal W and Clustal X version 2.0 , 2007, Bioinform..
[8] M. Briones,et al. Fungi Evolution Revisited: Application of the Penalized Likelihood Method to a Bayesian Fungal Phylogeny Provides a New Perspective on Phylogenetic Relationships and Divergence Dates of Ascomycota Groups , 2005, Journal of Molecular Evolution.
[9] M. Briones,et al. Experimental phylogeny of neutrally evolving DNA sequences generated by a bifurcate series of nested polymerase chain reactions. , 2002, Molecular biology and evolution.
[10] J. Kiefer,et al. Asymptotic Minimax Character of the Sample Distribution Function and of the Classical Multinomial Estimator , 1956 .
[11] M. Suchard,et al. Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.
[12] D. Posada. jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.
[13] J. Klotz. ASYMPTOTIC EFFICIENCY OF THE KOLMOGOROV - SMIRNOV TEST , 1966 .
[14] P. Schmid,et al. On the Kolmogorov and Smirnov Limit Theorems for Discontinuous Distribution Functions , 1958 .
[15] F. Massey. The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .
[16] Istituto italiano degli attuari. Giornale dell'Istituto italiano degli attuari , 1930 .
[17] S. Horn,et al. Goodness-of-fit tests for discrete data: a review and an application to a health impairment scale. , 1977, Biometrics.
[18] Maxim Teslenko,et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.
[19] Andrew Rambaut,et al. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees , 1997, Comput. Appl. Biosci..
[20] L. Pauling,et al. Molecules as documents of evolutionary history. , 1965, Journal of theoretical biology.
[21] Korbinian Strimmer,et al. APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..
[22] N. Goldman. Variance to mean ratio, R(t), for poisson processes on phylogenetic trees. , 1994, Molecular phylogenetics and evolution.
[23] S. Yue,et al. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series , 2004 .
[24] M. Stephens. Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics without Extensive Tables , 1970 .
[25] A. Papadopoulos,et al. On the Kolmogorov-Smirnov test for the Poisson distribution with unknown parameter , 2003 .
[26] N. Takahata,et al. On the overdispersed molecular clock. , 1987, Genetics.
[27] M. Kimura. Evolutionary Rate at the Molecular Level , 1968, Nature.
[28] P. Massart. The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality , 1990 .
[29] T. Ohta,et al. Protein Polymorphism as a Phase of Molecular Evolution , 1971, Nature.
[30] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[31] F. Massey,et al. Distribution Table for the Deviation Between two Sample Cumulatives , 1952 .
[32] L. Pauling,et al. Evolutionary Divergence and Convergence in Proteins , 1965 .
[33] Leon Jay Gleser,et al. Exact Power of Goodness-of-Fit Tests of Kolmogorov Type for Discontinuous Distributions , 1985 .
[34] W. Conover. A Kolmogorov Goodness-of-Fit Test for Discontinuous Distributions , 1972 .
[35] M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.
[36] J. L. King,et al. Non-Darwinian evolution. , 1969, Science.
[37] J. Frey. An exact Kolmogorov–Smirnov test for the Poisson distribution with unknown mean , 2012 .
[38] M. Stephens. EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .
[39] S. Ho,et al. Accuracy of rate estimation using relaxed-clock models with a critical focus on the early metazoan radiation. , 2005, Molecular biology and evolution.
[40] A. N. Shiryayev,et al. 15. On The Empirical Determination of A Distribution Law , 1992 .
[41] C. Oprian,et al. On the KOLMOGOROV‐SMIRNOV Test for the POISSON Distribution with Unknown Mean , 1979 .
[42] N. Takahata. Statistical models of the overdispersed molecular clock. , 1991, Theoretical population biology.
[43] T. Jukes,et al. The neutral theory of molecular evolution. , 2000, Genetics.
[44] Alfréd Rényi,et al. On an extremal property of the poisson process , 1964 .
[45] AN Kolmogorov-Smirnov,et al. Sulla determinazione empírica di uma legge di distribuzione , 1933 .
[46] Bernard M. E. Moret,et al. Phylogenetic Inference , 2011, Encyclopedia of Parallel Computing.
[47] Jean-Philippe Bouchaud,et al. Goodness-of-fit tests with dependent observations , 2011, 1106.3016.
[48] Norbert Henze,et al. Empirical‐distribution‐function goodness‐of‐fit tests for discrete models , 1996 .
[49] W. Li,et al. Evidence for higher rates of nucleotide substitution in rodents than in man. , 1985, Proceedings of the National Academy of Sciences of the United States of America.
[50] G. E. Noether. Note on the kolmogorov statistic in the discrete case , 1963 .
[51] J. Gillespie,et al. RATES OF MOLECULAR EVOLUTION , 1986 .
[52] A. Pettitt,et al. The Kolmogorov-Smirnov Goodness-of-Fit Statistic with Discrete and Grouped Data , 1977 .
[53] Marc S. Weiss. Modification of the Kolmogorov-Smirnov Statistic for Use with Correlated Data , 1978 .
[54] Constance L. Wood,et al. Large Sample Results for Kolmogorov-Smirnov Statistics for Discrete Distributions , 1978 .
[55] J. Felsenstein. Phylogenies from molecular sequences: inference and reliability. , 1988, Annual review of genetics.
[56] M. Kendall,et al. Kendall's advanced theory of statistics , 1995 .
[57] N. Smirnov. Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .
[58] R. Nielsen. Robustness of the estimator of the index of dispersion for DNA sequences. , 1997, Molecular phylogenetics and evolution.
[59] Q Zheng,et al. On the dispersion index of a Markovian molecular clock. , 2001, Mathematical biosciences.
[60] Larry Wasserman,et al. All of Nonparametric Statistics (Springer Texts in Statistics) , 2006 .
[61] P. Gingerich. Molecular Evolutionary Clocks , 1985, Science.
[62] M. Kimura. Molecular evolutionary clock and the neutral theory , 2005, Journal of Molecular Evolution.
[63] Stergios B. Fotopoulos,et al. All of Nonparametric Statistics , 2007, Technometrics.